Suppr超能文献

大量多导睡眠图睡眠指标对失眠患者主观睡眠质量的预测能力如何?

How well can a large number of polysomnography sleep measures predict subjective sleep quality in insomnia patients?

作者信息

Svetnik Vladimir, Snyder Ellen S, Tao Peining, Roth Thomas, Lines Christopher, Herring W Joseph

机构信息

Merck & Co., Inc., Kenilworth, NJ, USA.

Merck & Co., Inc., Kenilworth, NJ, USA.

出版信息

Sleep Med. 2020 Mar;67:137-146. doi: 10.1016/j.sleep.2019.08.020. Epub 2019 Sep 11.

Abstract

OBJECTIVE

The determinants of sleep quality (sQUAL) are poorly understood. We evaluated how well a large number of objective polysomnography (PSG) parameters can predict sQUAL in insomnia patients participating in trials of sleep medications or placebo.

METHODS

PSG recordings over multiple nights from two clinical drug development programs involving 1158 insomnia patients treated with suvorexant or placebo and 903 insomnia patients treated with gaboxadol or placebo were used post-hoc to analyze univariate and multivariate associations between sQUAL and 98 PSG sleep parameters plus patient's age and gender. Analyses were performed separately for each of the two clinical trial databases. For univariate associations, within-subject correlations were estimated using mixed effect modeling of bi-variate longitudinal data with one variable being a given PSG variable and the other being sQUAL. To evaluate how accurately sQUAL could be predicted by all PSG variables jointly plus patient's age and gender, the Random Forest multivariate technique was used. Random Forest was also used to evaluate the accuracy of sQUAL prediction by subjective sleep measures plus age and gender, and to quantitatively describe the relative importance of each variable for predicting sQUAL.

RESULTS

In the univariate analyses, total sleep time (TST) had the largest correlation with sQUAL compared with all other PSG sleep parameters, and the magnitude of the correlation between each PSG sleep architecture parameter and sQUAL generally increased with the strength of their associations with TST. In the multivariate analyses, the overall accuracy of sQUAL prediction, even with the large number of PSG parameters plus patient's age and gender, was moderate (area under the Receiver Operating Characteristic curve (AROC): 71.2-71.8%). Ranking of PSG parameters by their contribution to sQUAL indicated that TST was the most important predictor of sQUAL among all PSG variables. Subjective TST and subjective number of awakenings jointly with patient's age classified sQUAL with higher accuracy (AROC: 78.7-81.7%) than PSG variables plus age and gender. The pattern of findings was consistent across the two clinical trial databases.

CONCLUSION

In insomnia patients participating in trials of sleep medications or placebo, PSG variables had a moderate but consistent pattern of association with sQUAL across two separate clinical trial databases. Of the PSG variables evaluated, TST was the best predictor of sQUAL. CLINICAL TRIALS: trial registration at www.clinicaltrials.gov: NCT01097616; NCT01097629; NCT00094627; NCT00094666.

摘要

目的

睡眠质量(sQUAL)的决定因素尚不清楚。我们评估了大量客观多导睡眠图(PSG)参数在参与睡眠药物或安慰剂试验的失眠患者中预测sQUAL的能力。

方法

对来自两个临床药物研发项目的多晚PSG记录进行事后分析,这两个项目分别涉及1158例接受苏沃雷生或安慰剂治疗的失眠患者以及903例接受加波沙朵或安慰剂治疗的失眠患者,以分析sQUAL与98个PSG睡眠参数以及患者年龄和性别之间的单变量和多变量关联。对两个临床试验数据库分别进行分析。对于单变量关联,使用双变量纵向数据的混合效应模型估计受试者内相关性,其中一个变量是给定的PSG变量,另一个是sQUAL。为了评估所有PSG变量联合患者年龄和性别对sQUAL的预测准确性,使用了随机森林多变量技术。随机森林还用于评估主观睡眠测量加上年龄和性别对sQUAL预测的准确性,并定量描述每个变量对预测sQUAL的相对重要性。

结果

在单变量分析中,与所有其他PSG睡眠参数相比,总睡眠时间(TST)与sQUAL的相关性最大,并且每个PSG睡眠结构参数与sQUAL之间的相关程度通常随着它们与TST关联强度的增加而增加。在多变量分析中,即使加上大量的PSG参数以及患者年龄和性别,sQUAL预测的总体准确性也处于中等水平(受试者工作特征曲线下面积(AROC):71.2 - 71.8%)。根据PSG参数对sQUAL的贡献进行排名表明,在所有PSG变量中,TST是sQUAL最重要的预测因素。主观TST和主观觉醒次数与患者年龄联合对sQUAL的分类准确性(AROC:78.7 - 81.7%)高于PSG变量加上年龄和性别。两个临床试验数据库的研究结果模式一致。

结论

在参与睡眠药物或安慰剂试验的失眠患者中,在两个独立的临床试验数据库中,PSG变量与sQUAL存在中等但一致的关联模式。在所评估的PSG变量中,TST是sQUAL的最佳预测因素。临床试验:在www.clinicaltrials.gov上的试验注册:NCT01097616;NCT01097629;NCT00094627;NCT00094666。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验