Suppr超能文献

基于脂蛋白表型与载脂蛋白 B 的数据分析驱动的多变量人群亚组化在冠心病风险评估中的应用。

Data-driven multivariate population subgrouping via lipoprotein phenotypes versus apolipoprotein B in the risk assessment of coronary heart disease.

机构信息

Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland; Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland.

Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland; Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland; NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland.

出版信息

Atherosclerosis. 2020 Feb;294:10-15. doi: 10.1016/j.atherosclerosis.2019.12.009. Epub 2019 Dec 13.

Abstract

BACKGROUND AND AIMS

Population subgrouping has been suggested as means to improve coronary heart disease (CHD) risk assessment. We explored here how unsupervised data-driven metabolic subgrouping, based on comprehensive lipoprotein subclass data, would work in large-scale population cohorts.

METHODS

We applied a self-organizing map (SOM) artificial intelligence methodology to define subgroups based on detailed lipoprotein profiles in a population-based cohort (n = 5789) and utilised the trained SOM in an independent cohort (n = 7607). We identified four SOM-based subgroups of individuals with distinct lipoprotein profiles and CHD risk and compared those to univariate subgrouping by apolipoprotein B quartiles.

RESULTS

The SOM-based subgroup with highest concentrations for non-HDL measures had the highest, and the subgroup with lowest concentrations, the lowest risk for CHD. However, apolipoprotein B quartiles produced better resolution of risk than the SOM-based subgroups and also striking dose-response behaviour.

CONCLUSIONS

These results suggest that the majority of lipoprotein-mediated CHD risk is explained by apolipoprotein B-containing lipoprotein particles. Therefore, even advanced multivariate subgrouping, with comprehensive data on lipoprotein metabolism, may not advance CHD risk assessment.

摘要

背景和目的

人群亚组划分被认为是改善冠心病(CHD)风险评估的一种手段。本研究旨在探索基于全面脂蛋白亚类数据的无监督数据驱动代谢亚组划分方法在大规模人群队列中的应用效果。

方法

我们应用自组织映射(SOM)人工智能方法,根据基于人群的队列(n=5789)中的详细脂蛋白谱定义亚组,并在独立队列(n=7607)中使用经过训练的 SOM。我们确定了四个基于 SOM 的个体脂蛋白谱和 CHD 风险不同的亚组,并将其与载脂蛋白 B 四分位数的单变量亚组化进行比较。

结果

非高密度脂蛋白(non-HDL)指标浓度最高的 SOM 亚组的 CHD 风险最高,而浓度最低的亚组的 CHD 风险最低。然而,载脂蛋白 B 四分位数比基于 SOM 的亚组更好地解析风险,并且还具有显著的剂量反应行为。

结论

这些结果表明,脂蛋白介导的 CHD 风险的大部分可以用载脂蛋白 B 含量的脂蛋白颗粒来解释。因此,即使是基于全面脂蛋白代谢数据的先进的多变量亚组化,也可能无法提高 CHD 风险评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验