Poborchii Vladimir, Bouabdellaoui Mohammed, Uchida Noriyuki, Ronda Antoine, Berbezier Isabelle, David Thomas, Ruiz Carmen M, Zazoui Mimoun, Sena Robert Paria, Abbarchi Marco, Favre Luc
Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, AIST Central-5, Tsukuba 305-8565, Japan.
Nanotechnology. 2020 May 8;31(19):195602. doi: 10.1088/1361-6528/ab6ab8. Epub 2020 Jan 13.
All-dielectric photonics is a rapidly developing field of optics and material science. The main interest at visible and near-infrared frequencies is light management using high-refractive-index Mie-resonant dielectric particles. Most work in this area of research focuses on exploiting Si-based particles. Here, we study monocrystalline Mie-resonant particles made of Ge-rich SiGe alloys with refractive index higher than that of Si. These islands are formed via solid state dewetting of SiGe flat layers by using two different processes: (i) dewetting of monocrystalline SiGe layers (60%-80% Ge content) obtained via Ge condensation of SiGe on silicon on insulator; and (ii) dewetting of a SiGe layer deposited via molecular beam epitaxy on silicon on insulator and ex situ Ge condensation, forming a Ge-rich shell surrounding a SiGe-core. Using high-spatial-resolution Raman microscopy we monitor Ge content x and strain ϵ of flat layers and SiGe-islands. We observe strain relaxation associated with formation of trading dislocations in the SiGe islands compared to the starting SiGe layers, as confirmed by TEM images. For initial high Ge concentration in the flat layers, the corresponding Ge content in the dewetted islands is lower, owing to diffusion of Si atoms from Si or SiO into SiGe islands. The Ge content also varies from particle to particle on the same sample. Size and shape of the dewetted particles depend on the fabrication process: thicker initial SiGe layers lead to larger particles. Samples with narrow island size distribution display rather sharp Mie resonances in the 1000-2500 nm spectral range. Larger islands display Mie resonances at longer wavelength. Positions of the resonances are in agreement with the theoretical calculations in the discrete dipole approximation.
全介质光子学是光学和材料科学中一个快速发展的领域。在可见光和近红外频率下,主要的研究兴趣在于利用高折射率的米氏共振介电粒子进行光管理。该研究领域的大多数工作都集中在开发基于硅的粒子。在此,我们研究由富锗硅锗合金制成的单晶米氏共振粒子,其折射率高于硅。这些岛状结构通过两种不同的工艺由硅锗平面层的固态去湿形成:(i)通过在绝缘体上硅上的硅锗锗凝聚获得的单晶硅锗层(锗含量为60%-80%)的去湿;以及(ii)通过分子束外延在绝缘体上硅上沉积并进行异位锗凝聚形成的硅锗层的去湿,形成围绕硅锗核的富锗壳层。使用高空间分辨率拉曼显微镜,我们监测平面层和硅锗岛的锗含量x和应变ϵ。与起始硅锗层相比,我们观察到硅锗岛中与交易位错形成相关的应变弛豫,这已通过透射电子显微镜图像得到证实。对于平面层中初始高锗浓度,由于硅原子从硅或二氧化硅扩散到硅锗岛中,去湿岛中的相应锗含量较低。同一样品上的锗含量在不同粒子之间也有所变化。去湿粒子的尺寸和形状取决于制造工艺:初始硅锗层越厚,粒子越大。具有窄岛尺寸分布的样品在1000-2500nm光谱范围内显示出相当尖锐的米氏共振。较大的岛在更长波长处显示米氏共振。共振位置与离散偶极近似中的理论计算结果一致。