Suppr超能文献

环境友好型酶固定在 MOF 材料上。

Environmentally Friendly Enzyme Immobilization on MOF Materials.

机构信息

Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland.

Instituto de Catálisis y Petroleoquímica (ICP), CSIC, Madrid, Spain.

出版信息

Methods Mol Biol. 2020;2100:271-296. doi: 10.1007/978-1-0716-0215-7_18.

Abstract

Metal-organic framework (MOF) materials have revolutionized the applications of nanoporous materials. They can be potentially used in separation, storage, and catalysis, among other applications. Since their discovery in 1999 (Li et al. Nature 402:276-279, 1999; Chui Science 283:1148-1150, 1999), more than 20,000 new structures have been synthesized thanks in part to their high compositional versatility. However, only some of them are really stable in water (both in liquid and vapor phase), which limits their employment in other applications. Furthermore, biocatalysis field has been demanding a "universal support" able to encapsulate/immobilize any type of enzyme in a straightforward methodology and, simultaneously, capable of keeping the enzymatic catalytic activity. This requisite set has been a big challenge considering the drastic synthesis conditions required for most of the MOF materials. Thus, a compromise between the development of a well-formed material support and an acceptable enzymatic activity had to be achieved in order to obtain active biocatalysts, ideally prepared in just one step and under sustainable conditions. In this chapter, we describe the protocols about how to synthesize MOF materials in water, under mild conditions and almost instantaneously in the presence of enzymes. The most successful support of these sustainable MOFs was the semicrystalline Fe-BTC MOF material (like the commercial Basolite F300) allowing the development of efficient active biocatalysts (97% with respect to the free enzyme in the case of CALB lipase). Particularly, this enzyme support improves the benefits given by some other MOF-based supports also described in this chapter, like NH-MIL-53(Al). Furthermore, we present the post-synthesis immobilization approach, which consists firstly in the synthesis or preparation of the respective MOF material (Fe-BTC or NH-MIL-53(Al)), followed by an enzyme immobilization protocol. As reported in bibliography, MOFs as enzyme supports combine together more active biocatalysts with lower enzyme leaching when compared to other conventional materials. Moreover, MOFs prepared in non-aqueous media (for instance, N,N-dimethylformamide) can also trap enzymes in an otherwise adverse media. These facts bring these biocatalysts closer to industrial employment in even more demanding applications.

摘要

金属-有机骨架(MOF)材料彻底改变了纳米多孔材料的应用。它们可能在分离、储存和催化等应用中得到应用。自 1999 年(Li 等人,自然 402:276-279, 1999;Chui 科学 283:1148-1150, 1999)发现以来,由于其高组成的多功能性,已经合成了超过 20000 种新结构。然而,只有其中一些在水中(液体和气相)真正稳定,这限制了它们在其他应用中的使用。此外,生物催化领域一直要求有一种“通用载体”,能够以简单的方法封装/固定任何类型的酶,同时保持酶的催化活性。考虑到大多数 MOF 材料所需的剧烈合成条件,这一要求是一个巨大的挑战。因此,必须在开发成型良好的材料载体和可接受的酶活性之间取得平衡,以获得活性生物催化剂,理想的情况是仅通过一步且在可持续条件下制备。在本章中,我们描述了在水中温和条件下、在酶存在下瞬间合成 MOF 材料的方案。这些可持续 MOF 中最成功的载体是半结晶 Fe-BTC MOF 材料(如商业 Basolite F300),它允许开发高效的活性生物催化剂(CALB 脂肪酶的情况下,相对于游离酶为 97%)。特别是,这种酶载体提高了本章中描述的其他一些基于 MOF 的载体所带来的益处,如 NH-MIL-53(Al)。此外,我们还介绍了后合成固定化方法,该方法首先包括合成或制备相应的 MOF 材料(Fe-BTC 或 NH-MIL-53(Al)),然后是酶固定化的方案。正如文献报道的那样,与其他常规材料相比,MOF 作为酶载体结合了更多的活性生物催化剂,同时减少了酶浸出。此外,在非水介质(例如 N,N-二甲基甲酰胺)中制备的 MOF 也可以在不利的介质中捕获酶。这些事实使这些生物催化剂更接近在更具挑战性的应用中工业应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验