Suppr超能文献

非均质纳米流体系统中的耦合水、电荷和盐分输运

Coupled water, charge and salt transport in heterogeneous nano-fluidic systems.

作者信息

Werkhoven Ben L, van Roij René

机构信息

Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, Utrecht, 3584 CC, The Netherlands.

出版信息

Soft Matter. 2020 Feb 12;16(6):1527-1537. doi: 10.1039/c9sm02144b.

Abstract

We theoretically study the electrokinetic transport properties of nano-fluidic devices under the influence of a pressure, voltage or salinity gradient. On a microscopic level the behaviour of the device is quantified by the Onsager matrix L, a generalised conductivity matrix relating the local driving forces and the induced volume, charge and salt flux. Extending L from a local to a global linear-response relation is trivial for homogeneous electrokinetic systems, but in this manuscript we derive a generalised conductivity matrix G from L that applies also to heterogeneous electrokinetic systems. This extension is especially important in the case of an imposed salinity gradient, which gives necessarily rise to heterogeneous devices. Within this formalism we can also incorporate a heterogeneous surface charge due to, for instance, a charge regulating boundary condition, which we show to have a significant impact on the resulting fluxes. The predictions of the Poisson-Nernst-Planck-Stokes theory show good agreement with exact solutions of the governing equations determined using the finite element method under a wide variety of parameters. Having established the validity of the theory, it provides an accessible method to analyse electrokinetic systems in general without the need of extensive numerical methods. As an example, we analyse a reverse electrodialysis "blue energy" system, and analyse how the many parameters that characterise such a system affect the generated electrical power and efficiency.

摘要

我们从理论上研究了在压力、电压或盐度梯度影响下纳米流体装置的电动输运特性。在微观层面上,装置的行为由昂萨格矩阵(L)来量化,(L)是一个广义的电导率矩阵,它将局部驱动力与感应的体积、电荷和盐通量联系起来。对于均匀电动系统,将(L)从局部线性响应关系扩展到全局线性响应关系很简单,但在本手稿中,我们从(L)推导出了一个广义电导率矩阵(G),它也适用于非均匀电动系统。这种扩展在施加盐度梯度的情况下尤为重要,因为这必然会导致装置的非均匀性。在这种形式体系中,我们还可以纳入由于例如电荷调节边界条件而产生的非均匀表面电荷,我们表明这对产生的通量有显著影响。泊松 - 能斯特 - 普朗克 - 斯托克斯理论的预测与在各种参数下使用有限元方法确定的控制方程的精确解显示出良好的一致性。在确立了该理论的有效性之后,它提供了一种通用的、无需广泛数值方法就能分析电动系统的可行方法。作为一个例子,我们分析了一个反向电渗析“蓝能源”系统,并分析了表征此类系统的众多参数如何影响所产生的电能和效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验