National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bldg. 35, Rm. 2B-1012, Bethesda, MD 20892, USA.
National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bldg. 35, Rm. 2B-1012, Bethesda, MD 20892, USA; Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden.
Cell Rep. 2020 Jan 14;30(2):421-431.e7. doi: 10.1016/j.celrep.2019.12.044.
For decades, two fusion modes were thought to control hormone and transmitter release essential to life; one facilitates release via fusion pore dilation and flattening (full collapse), and the other limits release by closing a narrow fusion pore (kiss-and-run). Using super-resolution stimulated emission depletion (STED) microscopy to visualize fusion modes of dense-core vesicles in neuroendocrine cells, we find that facilitation of release is mediated not by full collapse but by shrink fusion, in which the Ω-profile generated by vesicle fusion shrinks but maintains a large non-dilating pore. We discover that the physiological osmotic pressure of a cell squeezes, but does not dilate, the Ω-profile, which explains why shrink fusion prevails over full collapse. Instead of kiss-and-run, enlarge fusion, in which Ω-profiles grow while maintaining a narrow pore, slows down release. Shrink and enlarge fusion may thus account for diverse hormone and transmitter release kinetics observed in secretory cells, previously interpreted within the full-collapse/kiss-and-run framework.
几十年来,人们一直认为有两种融合模式可以控制对生命至关重要的激素和递质释放;一种通过融合孔扩张和平坦化(完全塌陷)促进释放,另一种通过关闭狭窄的融合孔限制释放(亲吻和跑)。使用超分辨率受激发射损耗(STED)显微镜来可视化神经内分泌细胞中致密核心囊泡的融合模式,我们发现促进释放不是通过完全塌陷而是通过收缩融合来介导的,其中由囊泡融合产生的Ω 轮廓收缩但保持大的非扩张孔。我们发现细胞的生理渗透压会挤压,但不会扩张Ω 轮廓,这解释了为什么收缩融合会超过完全塌陷。与 kiss-and-run 不同的是,扩大融合,其中 Ω 轮廓在保持狭窄孔的同时增长,会减缓释放。因此,收缩和扩大融合可能解释了在分泌细胞中观察到的不同激素和递质释放动力学,这些动力学以前是在完全塌陷/亲吻和跑框架内解释的。