Suppr超能文献

一种用于显微镜图像中粒子跟踪的循环神经网络,该网络使用未来信息、轨迹假设和多次检测。

A Recurrent Neural Network for Particle Tracking in Microscopy Images Using Future Information, Track Hypotheses, and Multiple Detections.

作者信息

Spilger Roman, Imle Andrea, Lee Ji-Young, Muller Barbara, Fackler Oliver T, Bartenschlager Ralf, Rohr Karl

出版信息

IEEE Trans Image Process. 2020 Jan 13. doi: 10.1109/TIP.2020.2964515.

Abstract

Automatic tracking of particles in time-lapse fluorescence microscopy images is essential for quantifying the dynamic behavior of subcellular structures and virus structures. We introduce a novel particle tracking approach based on a deep recurrent neural network architecture that exploits past and future information in both forward and backward direction. Assignment probabilities are determined jointly across multiple detections, and the probability of missing detections is computed. In addition, existence probabilities are determined by the network to handle track initiation and termination. For correspondence finding, track hypotheses are propagated to future time points so that information at later time points can be used to resolve ambiguities. A handcrafted similarity measure and handcrafted motion features are not necessary. Manually labeled data is not required for network training. We evaluated the performance of our approach using image data of the Particle Tracking Challenge as well as real fluorescence microscopy image sequences of virus structures. It turned out that the proposed approach outperforms previous methods.

摘要

在延时荧光显微镜图像中自动跟踪粒子对于量化亚细胞结构和病毒结构的动态行为至关重要。我们引入了一种基于深度循环神经网络架构的新型粒子跟踪方法,该方法在向前和向后方向上利用过去和未来的信息。跨多个检测联合确定分配概率,并计算漏检概率。此外,网络确定存在概率以处理轨迹起始和终止。为了找到对应关系,将轨迹假设传播到未来时间点,以便可以使用稍后时间点的信息来解决模糊性。无需手工制作的相似性度量和手工制作的运动特征。网络训练不需要人工标记的数据。我们使用粒子跟踪挑战赛的图像数据以及病毒结构的真实荧光显微镜图像序列评估了我们方法的性能。结果表明,所提出的方法优于先前的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验