Institute of Physics and IMN MacroNano®, Ilmenau University of Technology, Ilmenau, Germany.
NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore.
Nat Commun. 2020 Jan 15;11(1):299. doi: 10.1038/s41467-019-14170-6.
Downsizing the cell size of honeycomb monoliths to nanoscale would offer high freedom of nanostructure design beyond their capability for broad applications in different fields. However, the microminiaturization of honeycomb monoliths remains a challenge. Here, we report the fabrication of microminiaturized honeycomb monoliths-honeycomb alumina nanoscaffold-and thus as a robust nanostructuring platform to assemble active materials for micro-supercapacitors. The representative honeycomb alumina nanoscaffold with hexagonal cell arrangement and 400 nm inter-cell spacing has an ultrathin but stiff nanoscaffold with only 16 ± 2 nm cell-wall-thickness, resulting in a cell density of 4.65 × 10 cells per square inch, a surface area enhancement factor of 240, and a relative density of 0.0784. These features allow nanoelectrodes based on honeycomb alumina nanoscaffold synergizing both effective ion migration and ample electroactive surface area within limited footprint. A micro-supercapacitor is finally constructed and exhibits record high performance, suggesting the feasibility of the current design for energy storage devices.
将蜂窝状整体式材料的单元尺寸缩小到纳米级,将为其在不同领域的广泛应用提供远超其能力的纳米结构设计自由度。然而,蜂窝状整体式材料的微细化仍然是一个挑战。在这里,我们报告了微细化蜂窝状整体式材料-蜂窝状氧化铝纳米支架的制造,从而为组装用于微超级电容器的活性材料提供了一个坚固的纳米结构平台。具有六方单元排列和 400nm 单元间间距的代表性蜂窝状氧化铝纳米支架具有超薄但坚硬的纳米支架,其壁厚度仅为 16±2nm,从而具有 4.65×10cells/平方英寸的单元密度、240 的表面积增强因子和 0.0784 的相对密度。这些特征允许基于蜂窝状氧化铝纳米支架的纳米电极在有限的面积内协同实现有效离子迁移和充足的电活性表面积。最终构建了一个微超级电容器,并表现出创纪录的高性能,这表明了当前设计用于储能设备的可行性。