School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
Semiconductor R&D Center, Samsung Electronics, Hwaseong, Gyeonggi, 18448, Republic of Korea.
Sci Rep. 2020 Jan 15;10(1):388. doi: 10.1038/s41598-019-57339-1.
Hormones within very low levels regulate and control the activity of specific cells and organs of the human body. Hormone imbalance can cause many diseases. Therefore, hormone detection tools have been developed, particularly over the last decade. Peptide hormones have a short half-life, so it is important to detect them within a short time. In this study, we report two types of peptide hormone sensors using human hormone receptor-carrying nanovesicles and graphene field-effect transistors (FETs). Parathyroid hormone (PTH) and glucagon (GCG) are peptide hormones present in human blood that act as ligands to G protein-coupled receptors (GPCRs). In this paper, the parathyroid hormone receptor (PTHR) and the glucagon receptor (GCGR) were expressed in human embryonic kidney-293 (HEK-293) cells, and were constructed as nanovesicles carrying the respective receptors. They were then immobilized onto graphene-based FETs. The two hormone sensors developed were able to detect each target hormone with high sensitivity (ca. 100 fM of PTH and 1 pM of GCG). Also, the sensors accurately recognized target hormones among different types of peptide hormones. In the development of hormone detection tools, this approach, using human hormone receptor-carrying nanovesicles and graphene FETs, offers the possibility of detecting very low concentrations of hormones in real-time.
激素在非常低的水平上调节和控制人体特定细胞和器官的活动。激素失衡会导致许多疾病。因此,已经开发出激素检测工具,尤其是在过去十年中。肽激素的半衰期很短,因此在短时间内检测它们很重要。在这项研究中,我们报告了两种使用载有人体激素受体的纳米囊泡和石墨烯场效应晶体管 (FET) 的肽激素传感器。甲状旁腺激素 (PTH) 和胰高血糖素 (GCG) 是存在于人体血液中的肽激素,作为 G 蛋白偶联受体 (GPCR) 的配体起作用。在本文中,甲状旁腺激素受体 (PTHR) 和胰高血糖素受体 (GCGR) 在人胚肾-293 (HEK-293) 细胞中表达,并构建为携带各自受体的纳米囊泡。然后将它们固定在基于石墨烯的 FET 上。开发的两种激素传感器能够以高灵敏度(约 100 fM 的 PTH 和 1 pM 的 GCG)检测每种目标激素。此外,传感器能够准确识别不同类型肽激素中的靶激素。在激素检测工具的开发中,这种使用载有人体激素受体的纳米囊泡和石墨烯 FET 的方法为实时检测非常低浓度的激素提供了可能性。