Suppr超能文献

基于羰基的π共轭材料:从合成到在锂离子电池中的应用

Carbonyl-Based π-Conjugated Materials: From Synthesis to Applications in Lithium-Ion Batteries.

作者信息

Oubaha Hamid, Gohy Jean-François, Melinte Sorin

机构信息

Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Electrical Engineering, Université catholique de Louvain, Place du Levant 3, B-1348, Louvain-la-Neuve, Belgium.

Institute of Condensed Matter and Nanosciences (IMCN), Bio- and Soft Matter (BSMA), Université catholique de Louvain, Place L. Pasteur 1, B-1348, Louvain-la-Neuve, Belgium.

出版信息

Chempluschem. 2019 Sep;84(9):1179-1214. doi: 10.1002/cplu.201800652. Epub 2019 Apr 12.

Abstract

The constant growth in the global energy demand together with the increasing awareness of clean and sustainable development has strongly pushed scientists to search for metal-free, low-cost, environmentally friendly functional energy-storage systems (ESSs). Among the reported organic electrode materials, carbonyl-based π-conjugated compounds show excellent rate capabilities and cycling stabilities and are powerful candidates for the next generation of rechargeable lithium-ion batteries (LIBs). Benefiting from the molecular structure versatility and design feasibility, the electrochemical properties of organic and polymeric materials can be easily tuned. This Review summarizes recent efforts in the search for carbonyl-based π-conjugated electrode materials in LIBs with a focus on the synthetic strategies developed to improve their electrochemical performance. The use of these materials in flexible, all-organic LIBs is highlighted as a unique direction towards widespread applications of LIBs.

摘要

全球能源需求的持续增长,以及对清洁和可持续发展意识的不断提高,有力地推动科学家们去寻找无金属、低成本、环境友好的功能性储能系统(ESS)。在已报道的有机电极材料中,基于羰基的π共轭化合物表现出优异的倍率性能和循环稳定性,是下一代可充电锂离子电池(LIB)的有力候选材料。得益于分子结构的多样性和设计的可行性,有机和聚合物材料的电化学性能可以很容易地进行调整。本综述总结了近期在寻找用于LIB的基于羰基的π共轭电极材料方面所做的努力,重点关注为提高其电化学性能而开发的合成策略。这些材料在柔性全有机LIB中的应用被视为LIB广泛应用的一个独特方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验