Suppr超能文献

有机羰基电极材料的分子工程化用于先进的固定和氧化还原流可充电电池。

Molecular Engineering with Organic Carbonyl Electrode Materials for Advanced Stationary and Redox Flow Rechargeable Batteries.

机构信息

Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.

Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, China.

出版信息

Adv Mater. 2017 Dec;29(48). doi: 10.1002/adma.201607007. Epub 2017 Apr 3.

Abstract

Organic carbonyl electrode materials that have the advantages of high capacity, low cost and being environmentally friendly, are regarded as powerful candidates for next-generation stationary and redox flow rechargeable batteries (RFBs). However, low carbonyl utilization, poor electronic conductivity and undesired dissolution in electrolyte are urgent issues to be solved. Here, we summarize a molecular engineering approach for tuning the capacity, working potential, concentration of active species, kinetics, and stability of stationary and redox flow batteries, which well resolves the problems of organic carbonyl electrode materials. As an example, in stationary batteries, 9,10-anthraquinone (AQ) with two carbonyls delivers a capacity of 257 mAh g (2.27 V vs Li /Li), while increasing the number of carbonyls to four with the formation of 5,7,12,14-pentacenetetrone results in a higher capacity of 317 mAh g (2.60 V vs Li /Li). In RFBs, AQ, which is less soluble in aqueous electrolyte, reaches 1 M by grafting -SO H with the formation of 9,10-anthraquinone-2,7-disulphonic acid, resulting in a power density exceeding 0.6 W cm with long cycling life. Therefore, through regulating substituent groups, conjugated structures, Coulomb interactions, and the molecular weight, the electrochemical performance of carbonyl electrode materials can be rationally optimized. This review offers fundamental principles and insight into designing advanced carbonyl materials for the electrodes of next-generation rechargeable batteries.

摘要

具有高容量、低成本和环保优势的有机羰基电极材料被认为是下一代固定和氧化还原液流可充电电池(RFB)的有力候选材料。然而,羰基利用率低、电子电导率差以及在电解液中不期望的溶解等问题亟待解决。在这里,我们总结了一种分子工程方法,用于调节固定和氧化还原液流电池的容量、工作电位、活性物质浓度、动力学和稳定性,从而很好地解决了有机羰基电极材料的问题。例如,在固定电池中,具有两个羰基的 9,10-蒽醌(AQ)提供 257 mAh g(2.27 V 相对于 Li/Li)的容量,而通过形成 5,7,12,14-戊四烯四酮将羰基数量增加到四个,则可提供更高的容量 317 mAh g(2.60 V 相对于 Li/Li)。在 RFB 中,AQ 在水性电解质中的溶解度较低,通过与-SO3H 接枝形成 9,10-蒽醌-2,7-二磺酸,其浓度可达 1 M,从而实现超过 0.6 W cm 的功率密度和长循环寿命。因此,通过调节取代基、共轭结构、库仑相互作用和分子量,可以合理优化羰基电极材料的电化学性能。本综述为设计下一代可充电电池的先进羰基材料提供了基本原理和见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验