Suppr超能文献

电子健康记录中自然语言的自动筛查对于诊断感染性休克是可行的,并且优于基于明确的行政代码的方法。

Automated screening of natural language in electronic health records for the diagnosis septic shock is feasible and outperforms an approach based on explicit administrative codes.

机构信息

Ghent University Hospital, Department of Intensive Care Medicine, Belgium.

Ghent University Hospital, Department of Intensive Care Medicine, Belgium; Ghent University, Faculty of Medicine and Health Sciences, Belgium.

出版信息

J Crit Care. 2020 Apr;56:203-207. doi: 10.1016/j.jcrc.2020.01.007. Epub 2020 Jan 9.

Abstract

PURPOSE

Identification of patients for epidemiologic research through administrative coding has important limitations. We investigated the feasibility of a search based on natural language processing (NLP) on the text sections of electronic health records for identification of patients with septic shock.

MATERIALS AND METHODS

Results of an explicit search strategy (using explicit concept retrieval) and a combined search strategy (using both explicit and implicit concept retrieval) were compared to hospital ICD-9 based administrative coding and to our department's own prospectively compiled infection database.

RESULTS

Of 8911 patients admitted to the medical or surgical ICU, 1023 (11.5%) suffered from septic shock according to the combined search strategy. This was significantly more than those identified by the explicit strategy (518, 5.8%), by hospital administrative coding (549, 5.8%) or by our own prospectively compiled database (609, 6.8%) (p < .001). Sensitivity and specificity of the automated combined search strategy were 72.7% (95%CI 69.0%-76.2%) and 93.0% (95%CI 92.4%-93.6%), compared to 56.0% (95%CI 52.0%-60.0%) and 97.5% (95%CI 97.1%-97.8%) for hospital administrative coding.

CONCLUSIONS

An automated search strategy based on a combination of explicit and implicit concept retrieval is feasible to screen electronic health records for septic shock and outperforms an administrative coding based explicit approach.

摘要

目的

通过行政编码识别流行病学研究中的患者存在重要局限性。我们研究了基于自然语言处理(NLP)的电子健康记录文本部分搜索来识别感染性休克患者的可行性。

材料与方法

明确搜索策略(使用明确的概念检索)和联合搜索策略(使用明确和隐含的概念检索)的结果与医院 ICD-9 基于行政编码和我们部门的前瞻性感染数据库进行了比较。

结果

在入住内科或外科 ICU 的 8911 名患者中,根据联合搜索策略,有 1023 名(11.5%)患有感染性休克。这明显多于明确策略(518 名,5.8%)、医院行政编码(549 名,5.8%)或我们部门前瞻性感染数据库(609 名,6.8%)识别的患者(p<.001)。自动联合搜索策略的敏感性和特异性分别为 72.7%(95%CI 69.0%-76.2%)和 93.0%(95%CI 92.4%-93.6%),而医院行政编码的敏感性和特异性分别为 56.0%(95%CI 52.0%-60.0%)和 97.5%(95%CI 97.1%-97.8%)。

结论

基于明确和隐含概念检索相结合的自动搜索策略可用于筛选电子健康记录中的感染性休克,并优于基于行政编码的明确方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验