Suppr超能文献

基于ORICA的高效实时多通道脑电图系统的片上系统设计

A SOC Design of ORICA-based Highly Effective Real-time Multi-channel EEG System.

作者信息

Ho Yun-Lung, Huang Yu-De, Wang Kai-Yen, Fang Wai-Chi

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:664-667. doi: 10.1109/EMBC.2019.8856322.

Abstract

Independent component analysis (ICA) has been wildly used to improve EEG based application such as brain computer interface (BCI). However, some well know ICA algorithm, such as Infomax ICA, suffering from the problem of convergence latency and make it hard to be apply on real-time application. This paper proposes a highly efficient chip implementation of multi-channel EEG real-time system based on online recursive independent component analysis algorithm (ORICA). The core size of the chip is 1.5525-mm using 28nm CMOS technology. The EEG demonstration board will be implemented with the ORICA chip. The operation frequency and power consumption of the chip are 100 MHz and 17.9 mW respectively. The proposed chip was validated with a real-time circuit integrated system and the average correlation coefficient between simulations results and chip processing results is 0.958.

摘要

独立成分分析(ICA)已被广泛用于改进基于脑电图的应用,如脑机接口(BCI)。然而,一些知名的ICA算法,如信息最大化ICA,存在收敛延迟问题,使其难以应用于实时应用。本文提出了一种基于在线递归独立成分分析算法(ORICA)的多通道脑电图实时系统的高效芯片实现方案。该芯片采用28nm CMOS技术,核心尺寸为1.5525平方毫米。脑电图演示板将采用ORICA芯片实现。该芯片的工作频率和功耗分别为100 MHz和17.9 mW。所提出的芯片通过实时电路集成系统进行了验证,仿真结果与芯片处理结果之间的平均相关系数为0.958。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验