Thakur R, Nair A R, Jin A, Fridman G Y
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:3750-3753. doi: 10.1109/EMBC.2019.8856381.
Direct current (DC) has the potential not only to excite but also to inhibit neurons. This property of DC stimulus has been used for generating peripheral nerve blocks. One translational challenge of DC-based neuromodulation technologies, especially for pain suppression, is that the commercially available cuff electrodes have metal-tissue interfaces that are incapable of delivering DC safely. Passing DC through any metal-tissue interface generates harmful electrochemical products which can damage the target nerve. To address this issue, we present a fabrication process for making self-curling silicone cuffs with paper/agar based, ionically conducting neural interface. We fabricate monopolar as well as bipolar cuffs and demonstrate that the electrode impedances can be easily controlled by modulating the paper/agar channel dimensions. Further, we perform in-vivo implantation of these electrodes on a rat sciatic nerve to qualitatively validate the self-curling action.
直流电(DC)不仅具有激发神经元的潜力,还具有抑制神经元的能力。直流刺激的这一特性已被用于产生外周神经阻滞。基于直流的神经调节技术的一个转化挑战,尤其是对于疼痛抑制而言,是市售的袖带电极具有无法安全输送直流电的金属 - 组织界面。使直流电通过任何金属 - 组织界面会产生有害的电化学产物,这些产物会损害目标神经。为了解决这个问题,我们提出了一种制造工艺,用于制作具有基于纸/琼脂的离子传导神经界面的自卷曲硅胶袖带。我们制造了单极和双极袖带,并证明通过调节纸/琼脂通道尺寸可以轻松控制电极阻抗。此外,我们将这些电极在大鼠坐骨神经上进行体内植入,以定性验证自卷曲作用。