Thakur Raviraj, Aplin Felix P, Fridman Gene Y
Department of Otolaryngology, Head and Neck Surgery, Johns Hopkins University, Baltimore, MD 21205, USA.
Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA.
Micromachines (Basel). 2021 Dec 8;12(12):1522. doi: 10.3390/mi12121522.
Implantable neuromodulation devices typically have metal in contact with soft, ion-conducting nerves. These neural interfaces excite neurons using short-duration electrical pulses. While this approach has been extremely successful for multiple clinical applications, it is limited in delivering long-duration pulses or direct current (DC), even for acute term studies. When the charge injection capacity of electrodes is exceeded, irreversible electrochemical processes occur, and toxic byproducts are discharged directly onto the nerve, causing biological damage. Hydrogel coatings on electrodes improve the overall charge injection limit and provide a mechanically pliable interface. To further extend this idea, we developed a silicone-based nerve cuff lead with a hydrogel microfluidic conduit. It serves as a thin, soft and flexible interconnection and provides a greater spatial separation between metal electrodes and the target nerve. In an in vivo rat model, we used this cuff to stimulate and record from sciatic nerves, with performance comparable to that of metal electrodes. Further, we delivered DC through the lead in an acute manner to induce nerve block that is reversible. In contrast to most metallic cuff electrodes, which need microfabrication equipment, we built this cuff using a consumer-grade digital cutter and a simplified molding process. Overall, the device will be beneficial to neuromodulation researchers as a general-purpose nerve cuff electrode for peripheral neuromodulation experiments.
可植入神经调节装置通常有金属与柔软的、离子传导性神经相接触。这些神经接口使用短持续时间的电脉冲来刺激神经元。虽然这种方法在多种临床应用中非常成功,但即使在急性短期研究中,它在输送长持续时间脉冲或直流电(DC)方面也存在局限性。当电极的电荷注入能力被超过时,就会发生不可逆的电化学过程,有毒副产物会直接排放到神经上,造成生物损伤。电极上的水凝胶涂层提高了整体电荷注入极限,并提供了一个机械上柔韧的界面。为了进一步拓展这一理念,我们开发了一种带有水凝胶微流体导管的硅基神经袖带电极。它作为一种薄的、柔软且灵活的互连结构,在金属电极和目标神经之间提供了更大的空间分隔。在体内大鼠模型中,我们使用这个袖带对坐骨神经进行刺激和记录,其性能与金属电极相当。此外,我们通过该电极以急性方式输送直流电以诱导可逆的神经阻滞。与大多数需要微加工设备的金属袖带电极不同,我们使用消费级数字切割机和简化的成型工艺制造了这个袖带。总体而言,该装置作为用于外周神经调节实验的通用神经袖带电极,将对神经调节研究人员有益。