Yang Xulei, Su Yi, Tjio Gabriel, Yang Feng, Ding Jie, Kumar Senthil, Leng Shuang, Zhao Xiaodan, Tan Ru-San, Zhong Liang
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:4016-4019. doi: 10.1109/EMBC.2019.8856833.
Cardiac segmentation is the first most important step in assessing cardiac diseases. However, it still remains challenging owing to the complicated information of myocardium's boundary. In this work, we investigate approaches based on deep learning for fully automatic segmentation of the left ventricular (LV) endocardium using cardiac magnetic resonance (CMR) images. The deep convolutional neural network architectures, specifically, GoogleNet and U-Net, are modified and deployed to extract the features and then classify each pixel into either endocardium or background. Since adjacent frames for a given slice are imaged over a short time period across a cardiac cycle, the LV endocardium exhibit strong temporal correlation. To utilize the temporal information of heart motion to assist segmentation, we propose to construct multi-channel cardiac images by combining adjacent frames together with the current frame, which are used as the inputs for deep learning models. This allows the deep learning models to automatically learn spatial and temporal information. The performance of our constructed networks is evaluated by using the Dice metric to compare the segmented areas with the manually segmented ground truth. The experiments show that the multi-channel approaches converge more rapidly and achieve higher segmentation accuracy compared to the single channel approach.
心脏分割是评估心脏疾病的首要且最重要的步骤。然而,由于心肌边界信息复杂,这一过程仍然具有挑战性。在这项工作中,我们研究基于深度学习的方法,用于使用心脏磁共振(CMR)图像对左心室(LV)心内膜进行全自动分割。具体而言,对深度卷积神经网络架构GoogleNet和U-Net进行修改并部署,以提取特征,然后将每个像素分类为心内膜或背景。由于给定切片的相邻帧是在心动周期的短时间内成像的,左心室心内膜呈现出很强的时间相关性。为了利用心脏运动的时间信息辅助分割,我们建议通过将相邻帧与当前帧组合在一起构建多通道心脏图像,将其用作深度学习模型的输入。这使得深度学习模型能够自动学习空间和时间信息。我们通过使用Dice度量来比较分割区域与手动分割的真实情况,评估所构建网络的性能。实验表明,与单通道方法相比,多通道方法收敛更快,分割精度更高。