Suppr超能文献

二维超声图像中甲状腺纹理分类与分割的高阶统计分析

Higher Order Statistical Analysis for Thyroid Texture Classification and Segmentation in 2D ultrasound Images.

作者信息

Mahmoodian Naghmeh, Poudel Prabal, Illanes Alfredo, Friebe Michael

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:5832-5835. doi: 10.1109/EMBC.2019.8857380.

Abstract

Ultrasound (US) imaging is one of the most cost-effective imaging modality that utilizes sound waves for generating medical images of anatomical structure. However, the presence of speckle noise and low contrast in the US images makes it difficult to use for proper classification of anatomical structures in clinical scenarios. Hence, it is important to devise a method that is robust and accurate even in the presence of speckle noise and is not affected by the low image contrast. In this work, a novel approach for thyroid texture characterization based on extracting features utilizing higher order spectral analysis (HOSA) was used. A Support Vector Machine (SVM) was applied on the extracted features to classify the thyroid texture. Since HOSA is a well suited technique for processing non-Gaussian data involving non-linear dynamics, good classification of thyroid texture can be obtained in US images as they also contain non-Gaussian Speckle noise and nonlinear characteristics. A final accuracy of 93.27%, sensitivity of 0.92 and specificity of 0.62 were obtained using the proposed approach.

摘要

超声(US)成像是最具成本效益的成像方式之一,它利用声波生成解剖结构的医学图像。然而,US图像中存在斑点噪声和低对比度,这使得在临床场景中难以用于对解剖结构进行准确分类。因此,设计一种即使在存在斑点噪声的情况下也稳健且准确、不受低图像对比度影响的方法非常重要。在这项工作中,使用了一种基于利用高阶谱分析(HOSA)提取特征的甲状腺纹理特征化新方法。将支持向量机(SVM)应用于提取的特征以对甲状腺纹理进行分类。由于HOSA是处理涉及非线性动力学的非高斯数据的合适技术,因此在US图像中可以获得良好的甲状腺纹理分类,因为它们也包含非高斯斑点噪声和非线性特征。使用所提出的方法获得了93.27%的最终准确率、0.92的灵敏度和0.62的特异性。

相似文献

1
Higher Order Statistical Analysis for Thyroid Texture Classification and Segmentation in 2D ultrasound Images.
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:5832-5835. doi: 10.1109/EMBC.2019.8857380.
2
Parametrical modelling for texture characterization-A novel approach applied to ultrasound thyroid segmentation.
PLoS One. 2019 Jan 29;14(1):e0211215. doi: 10.1371/journal.pone.0211215. eCollection 2019.
4
Robust spatial fuzzy GMM based MRI segmentation and carotid artery plaque detection in ultrasound images.
Comput Methods Programs Biomed. 2019 Jul;175:179-192. doi: 10.1016/j.cmpb.2019.04.026. Epub 2019 Apr 23.
5
Rayleigh-maximum-likelihood bilateral filter for ultrasound image enhancement.
Biomed Eng Online. 2017 Apr 17;16(1):46. doi: 10.1186/s12938-017-0336-9.
6
7
Non-invasive automated 3D thyroid lesion classification in ultrasound: a class of ThyroScan™ systems.
Ultrasonics. 2012 Apr;52(4):508-20. doi: 10.1016/j.ultras.2011.11.003. Epub 2011 Nov 25.
8
Patch Based Texture Classification of Thyroid Ultrasound Images using Convolutional Neural Network.
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:5828-5831. doi: 10.1109/EMBC.2019.8857929.
9
A Dynamic Graph Cuts Method with Integrated Multiple Feature Maps for Segmenting Kidneys in 2D Ultrasound Images.
Acad Radiol. 2018 Sep;25(9):1136-1145. doi: 10.1016/j.acra.2018.01.004. Epub 2018 Feb 12.

引用本文的文献

1
Tracked 3D ultrasound and deep neural network-based thyroid segmentation reduce interobserver variability in thyroid volumetry.
PLoS One. 2022 Jul 29;17(7):e0268550. doi: 10.1371/journal.pone.0268550. eCollection 2022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验