Suppr超能文献

一种基于动态图割的方法,集成了多个特征图,用于分割二维超声图像中的肾脏。

A Dynamic Graph Cuts Method with Integrated Multiple Feature Maps for Segmenting Kidneys in 2D Ultrasound Images.

机构信息

Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Richards Building, 7th floor, 3700 Hamilton Walk, Philadelphia, PA, 19104-6116; School of Computer and Control Engineering, Yantai University, Yantai, China.

Division of Urology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.

出版信息

Acad Radiol. 2018 Sep;25(9):1136-1145. doi: 10.1016/j.acra.2018.01.004. Epub 2018 Feb 12.

Abstract

RATIONALE AND OBJECTIVES

Automatic segmentation of kidneys in ultrasound (US) images remains a challenging task because of high speckle noise, low contrast, and large appearance variations of kidneys in US images. Because texture features may improve the US image segmentation performance, we propose a novel graph cuts method to segment kidney in US images by integrating image intensity information and texture feature maps.

MATERIALS AND METHODS

We develop a new graph cuts-based method to segment kidney US images by integrating original image intensity information and texture feature maps extracted using Gabor filters. To handle large appearance variation within kidney images and improve computational efficiency, we build a graph of image pixels close to kidney boundary instead of building a graph of the whole image. To make the kidney segmentation robust to weak boundaries, we adopt localized regional information to measure similarity between image pixels for computing edge weights to build the graph of image pixels. The localized graph is dynamically updated and the graph cuts-based segmentation iteratively progresses until convergence. Our method has been evaluated based on kidney US images of 85 subjects. The imaging data of 20 randomly selected subjects were used as training data to tune parameters of the image segmentation method, and the remaining data were used as testing data for validation.

RESULTS

Experiment results demonstrated that the proposed method obtained promising segmentation results for bilateral kidneys (average Dice index = 0.9446, average mean distance = 2.2551, average specificity = 0.9971, average accuracy = 0.9919), better than other methods under comparison (P < .05, paired Wilcoxon rank sum tests).

CONCLUSIONS

The proposed method achieved promising performance for segmenting kidneys in two-dimensional US images, better than segmentation methods built on any single channel of image information. This method will facilitate extraction of kidney characteristics that may predict important clinical outcomes such as progression of chronic kidney disease.

摘要

背景与目的

由于超声(US)图像中的高斑点噪声、低对比度和肾脏外观变化大,因此自动分割肾脏仍然是一项具有挑战性的任务。由于纹理特征可以提高 US 图像分割性能,我们提出了一种新的基于图割的方法,通过整合图像强度信息和纹理特征图来分割 US 图像中的肾脏。

材料与方法

我们开发了一种新的基于图割的方法,通过整合原始图像强度信息和使用 Gabor 滤波器提取的纹理特征图来分割肾脏 US 图像。为了处理肾脏图像中较大的外观变化并提高计算效率,我们构建了一个靠近肾脏边界的图像像素图,而不是构建整个图像的图。为了使肾脏分割对弱边界具有鲁棒性,我们采用局部区域信息来测量图像像素之间的相似性,以计算边缘权重来构建图像像素图。局部图是动态更新的,基于图割的分割迭代进行,直到收敛。我们的方法已经基于 85 个对象的肾脏 US 图像进行了评估。使用 20 个随机选择的对象的成像数据作为训练数据来调整图像分割方法的参数,并用剩余的数据作为测试数据进行验证。

结果

实验结果表明,该方法对双侧肾脏的分割效果良好(平均 Dice 指数=0.9446,平均平均距离=2.2551,平均特异性=0.9971,平均准确性=0.9919),优于其他比较方法(P<.05,配对 Wilcoxon 秩和检验)。

结论

该方法在二维 US 图像中分割肾脏的性能良好,优于基于图像信息单一通道的分割方法。该方法将有助于提取可能预测慢性肾脏病进展等重要临床结果的肾脏特征。

相似文献

1
A Dynamic Graph Cuts Method with Integrated Multiple Feature Maps for Segmenting Kidneys in 2D Ultrasound Images.
Acad Radiol. 2018 Sep;25(9):1136-1145. doi: 10.1016/j.acra.2018.01.004. Epub 2018 Feb 12.
3
Segmentation of abdomen MR images using kernel graph cuts with shape priors.
Biomed Eng Online. 2013 Dec 3;12:124. doi: 10.1186/1475-925X-12-124.
5
Transformative Deep Neural Network Approaches in Kidney Ultrasound Segmentation: Empirical Validation with an Annotated Dataset.
Interdiscip Sci. 2024 Jun;16(2):439-454. doi: 10.1007/s12539-024-00620-3. Epub 2024 Feb 27.
6
Segmentation of kidney from ultrasound images based on texture and shape priors.
IEEE Trans Med Imaging. 2005 Jan;24(1):45-57. doi: 10.1109/tmi.2004.837792.
7
Registration of renal SPECT and 2.5D US images.
Comput Med Imaging Graph. 2011 Jun;35(4):302-14. doi: 10.1016/j.compmedimag.2011.02.003. Epub 2011 Mar 2.
8
Novel Solution for Using Neural Networks for Kidney Boundary Extraction in 2D Ultrasound Data.
Biomolecules. 2023 Oct 19;13(10):1548. doi: 10.3390/biom13101548.
10
Nested Graph Cut for Automatic Segmentation of High-Frequency Ultrasound Images of the Mouse Embryo.
IEEE Trans Med Imaging. 2016 Feb;35(2):427-41. doi: 10.1109/TMI.2015.2477395. Epub 2015 Sep 9.

引用本文的文献

1
Fully automated kidney image biomarker prediction in ultrasound scans using Fast-Unet+.
Sci Rep. 2024 Feb 27;14(1):4782. doi: 10.1038/s41598-024-55106-5.
2
Novel Solution for Using Neural Networks for Kidney Boundary Extraction in 2D Ultrasound Data.
Biomolecules. 2023 Oct 19;13(10):1548. doi: 10.3390/biom13101548.
3
Current progress in artificial intelligence-assisted medical image analysis for chronic kidney disease: A literature review.
Comput Struct Biotechnol J. 2023 May 30;21:3315-3326. doi: 10.1016/j.csbj.2023.05.029. eCollection 2023.
4
Classifying Kidney Disease in a Vervet Model Using Spatially Encoded Contrast-Enhanced Ultrasound Perfusion Parameters.
Ultrasound Med Biol. 2023 Mar;49(3):761-772. doi: 10.1016/j.ultrasmedbio.2022.10.015. Epub 2022 Nov 30.
7
FULLY-AUTOMATIC SEGMENTATION OF KIDNEYS IN CLINICAL ULTRASOUND IMAGES USING A BOUNDARY DISTANCE REGRESSION NETWORK.
Proc IEEE Int Symp Biomed Imaging. 2019 Apr;2019:1741-1744. doi: 10.1109/ISBI.2019.8759170. Epub 2019 Jul 11.
10
TRANSFER LEARNING FOR DIAGNOSIS OF CONGENITAL ABNORMALITIES OF THE KIDNEY AND URINARY TRACT IN CHILDREN BASED ON ULTRASOUND IMAGING DATA.
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:1487-1490. doi: 10.1109/ISBI.2018.8363854. Epub 2018 May 24.

本文引用的文献

1
Multiparametric Quantitative Ultrasound Imaging in Assessment of Chronic Kidney Disease.
J Ultrasound Med. 2017 Nov;36(11):2245-2256. doi: 10.1002/jum.14209. Epub 2017 Apr 13.
2
Renal Segmentation From 3D Ultrasound via Fuzzy Appearance Models and Patient-Specific Alpha Shapes.
IEEE Trans Med Imaging. 2016 Nov;35(11):2393-2402. doi: 10.1109/TMI.2016.2572641. Epub 2016 May 24.
3
Atlas-based segmentation of abdominal organs in 3D ultrasound, and its application in automated kidney segmentation.
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:2001-5. doi: 10.1109/EMBC.2015.7318778.
4
Superpixel-Based Segmentation for 3D Prostate MR Images.
IEEE Trans Med Imaging. 2016 Mar;35(3):791-801. doi: 10.1109/TMI.2015.2496296. Epub 2015 Oct 30.
5
Renal parenchymal area and risk of ESRD in boys with posterior urethral valves.
Clin J Am Soc Nephrol. 2014 Mar;9(3):499-505. doi: 10.2215/CJN.08700813. Epub 2013 Dec 5.
8
A robust graph-based segmentation method for breast tumors in ultrasound images.
Ultrasonics. 2012 Feb;52(2):266-75. doi: 10.1016/j.ultras.2011.08.011. Epub 2011 Aug 25.
9
Simple parallel hierarchical and relaxation algorithms for segmenting noncausal markovian random fields.
IEEE Trans Pattern Anal Mach Intell. 1987 Feb;9(2):195-219. doi: 10.1109/tpami.1987.4767895.
10
Automatic adaptive parameterization in local phase feature-based bone segmentation in ultrasound.
Ultrasound Med Biol. 2011 Oct;37(10):1689-703. doi: 10.1016/j.ultrasmedbio.2011.06.006. Epub 2011 Aug 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验