Suppr超能文献

用于自然环境下帕金森震颤检测的多实例学习

Multiple-Instance Learning for In-The-Wild Parkinsonian Tremor Detection.

作者信息

Papadopoulos Alexandros, Kyritsis Konstantinos, Bostanjopoulou Sevasti, Klingelhoefer Lisa, Chaudhuri Ray K, Delopoulos Anastasios

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:6188-6191. doi: 10.1109/EMBC.2019.8856314.

Abstract

Parkinson's Disease (PD) is a neurodegenerative disorder that manifests through slowly progressing symptoms, such as tremor, voice degradation and bradykinesia. Automated detection of such symptoms has recently received much attention by the research community, owing to the clinical benefits associated with the early diagnosis of the disease. Unfortunately, most of the approaches proposed so far, operate under a strictly laboratory setting, thus limiting their potential applicability in real world conditions. In this work, we present a method for automatically detecting tremorous episodes related to PD, based on acceleration signals. We propose to address the problem at hand, as a case of Multiple-Instance Learning, wherein a subject is represented as an unordered bag of signal segments and a single, expert-provided, ground-truth. We employ a deep learning approach that combines feature learning and a learnable pooling stage and is trainable end-to-end. Results on a newly introduced dataset of accelerometer signals collected in-the-wild confirm the validity of the proposed approach.

摘要

帕金森病(PD)是一种神经退行性疾病,其症状表现为缓慢进展,如震颤、声音退化和运动迟缓。由于该疾病早期诊断具有临床益处,此类症状的自动检测最近受到了研究界的广泛关注。不幸的是,迄今为止提出的大多数方法都在严格的实验室环境下运行,因此限制了它们在现实世界条件下的潜在适用性。在这项工作中,我们提出了一种基于加速度信号自动检测与帕金森病相关震颤发作的方法。我们建议将手头的问题作为多实例学习的一个案例来解决,其中一个受试者被表示为信号段的无序包和单个由专家提供的真实情况。我们采用一种深度学习方法,该方法结合了特征学习和可学习的池化阶段,并且可以端到端地进行训练。在新引入的在自然环境中收集的加速度计信号数据集上的结果证实了所提出方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验