Suppr超能文献

基于智能手机的帕金森病手震颤评估工具。

A Smartphone-Based Tool for Assessing Parkinsonian Hand Tremor.

出版信息

IEEE J Biomed Health Inform. 2015 Nov;19(6):1835-42. doi: 10.1109/JBHI.2015.2471093. Epub 2015 Aug 20.

Abstract

The aim of this study is to propose a practical smartphone-based tool to accurately assess upper limb tremor in Parkinson's disease (PD) patients. The tool uses signals from the phone's accelerometer and gyroscope (as the phone is held or mounted on a subject's hand) to compute a set of metrics which can be used to quantify a patient's tremor symptoms. In a small-scale clinical study with 25 PD patients and 20 age-matched healthy volunteers, we combined our metrics with machine learning techniques to correctly classify 82% of the patients and 90% of the healthy volunteers, which is high compared to similar studies. The proposed method could be effective in assisting physicians in the clinic, or to remotely evaluate the patient's condition and communicate the results to the physician. Our tool is low cost, platform independent, noninvasive, and requires no expertise to use. It is also well matched to the standard clinical examination for PD and can keep the patient "connected" to his physician on a daily basis. Finally, it can facilitate the creation of anonymous profiles for PD patients, aiding further research on the effectiveness of medication or other overlooked aspects of patients' lives.

摘要

本研究旨在提出一种实用的基于智能手机的工具,以准确评估帕金森病(PD)患者的上肢震颤。该工具使用手机加速度计和陀螺仪(当手机被手持或安装在患者手上时)的信号来计算一组指标,可用于量化患者的震颤症状。在一项针对 25 名 PD 患者和 20 名年龄匹配的健康志愿者的小规模临床研究中,我们将我们的指标与机器学习技术相结合,正确分类了 82%的患者和 90%的健康志愿者,与类似研究相比,这一比例很高。该方法可有效协助医生在诊所进行诊断,或远程评估患者的病情并将结果传达给医生。我们的工具成本低、平台独立、非侵入性,且使用起来无需专业知识。它也非常适合 PD 的标准临床检查,可以让患者每天与他的医生保持“联系”。最后,它可以为 PD 患者创建匿名档案,有助于进一步研究药物的有效性或患者生活中其他被忽视的方面。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验