Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
Department of Chemistry and Chemical Biology, Rutgers School of Arts and Sciences, 123 Bevier Rd., Piscataway, NJ 08854, USA.
Biochim Biophys Acta Biomembr. 2020 May 1;1862(5):183191. doi: 10.1016/j.bbamem.2020.183191. Epub 2020 Jan 15.
Protein dynamics at atomic resolution can provide deep insights into the biological activities of proteins and enzymes but they can also make structure and dynamics studies challenging. Despite their well-known biological and pharmaceutical importance, integral membrane protein structure and dynamics studies lag behind those of water-soluble proteins mainly owing to solubility problems that result upon their removal from the membrane. Escherichia coli glycerol facilitator (GF) is a member of the aquaglyceroporin family that allows for the highly selective passive diffusion of its substrate glycerol across the inner membrane of the bacterium. Previous molecular dynamics simulations and hydrogen-deuterium exchange studies suggested that protein dynamics play an important role in the passage of glycerol through the protein pore. With the aim of studying GF dynamics by solution and solid-state nuclear magnetic resonance (NMR) spectroscopy we optimized the expression of isotope-labelled GF and explored various solubilizing agents including detergents, osmolytes, amphipols, random heteropolymers, lipid nanodiscs, bicelles and other buffer additives to optimize the solubility and polydispersity of the protein. The GF protein is most stable and soluble in lauryl maltose neopentyl glycol (LMNG), where it exists in a tetramer-octamer equilibrium. The solution structures of the GF tetramer and octamer were determined by negative-stain transmission electron microscopy (TEM), size-exclusion chromatography small-angle X-ray scattering (SEC-SAXS) and solid-state magic-angle spinning NMR spectroscopy. Although NMR sample preparation still needs optimization for full structure and dynamics studies, negative stain TEM and SEC-SAXS revealed low-resolution structures of the detergent-solubilized tetramer and octamer particles. The non-native octamer appears to form from the association of the cytoplasmic faces of two tetramers, the interaction apparently mediated by their disordered N- and C-termini. This information may be useful in future studies directed at reducing the heterogeneity and self-association of the protein.
蛋白质在原子分辨率下的动力学可以深入了解蛋白质和酶的生物活性,但它们也使得结构和动力学研究具有挑战性。尽管整合膜蛋白具有众所周知的生物学和制药重要性,但它们的结构和动力学研究落后于水溶性蛋白,主要是由于它们从膜中去除后会出现溶解度问题。大肠杆菌甘油促进剂 (GF) 是水通道蛋白家族的一员,允许其底物甘油高度选择性地被动扩散穿过细菌的内膜。先前的分子动力学模拟和氘氢交换研究表明,蛋白质动力学在甘油通过蛋白质孔的过程中起着重要作用。为了通过溶液和固态核磁共振 (NMR) 光谱研究 GF 的动力学,我们优化了同位素标记 GF 的表达,并探索了各种增溶剂,包括去污剂、渗透剂、两性聚合物、随机杂聚物、脂质纳米盘、双分子层和其他缓冲添加剂,以优化蛋白质的溶解度和多分散性。GF 蛋白在月桂基麦芽糖新戊二醇 (LMNG) 中最稳定和可溶,在该溶剂中它以四聚体-八聚体平衡存在。通过负染色透射电子显微镜 (TEM)、尺寸排阻色谱小角 X 射线散射 (SEC-SAXS) 和固态魔角旋转 NMR 光谱确定了 GF 四聚体和八聚体的溶液结构。尽管 NMR 样品制备仍需要优化以进行完整的结构和动力学研究,但负染色 TEM 和 SEC-SAXS 揭示了去污剂增溶的四聚体和八聚体颗粒的低分辨率结构。非天然的八聚体似乎是由两个四聚体的细胞质面的缔合形成的,这种相互作用显然是由它们无序的 N-和 C-末端介导的。这些信息可能对未来旨在减少蛋白质异质性和自组装的研究有用。