Suppr超能文献

一种用于模拟放射治疗束监测系统响应的人工神经网络。

An artificial neural network to model response of a radiotherapy beam monitoring system.

机构信息

Radiation Medicine Program, Princess Margaret Cancer Center, University Health Network, Toronto, Canada, M5G 2C1.

Department of Radiation Oncology, University of Toronto, Toronto, Canada, M5T 1P5.

出版信息

Med Phys. 2020 Apr;47(4):1983-1994. doi: 10.1002/mp.14033. Epub 2020 Feb 3.

Abstract

PURPOSE

The integral quality monitor (IQM) is a real-time radiotherapy beam monitoring system, which consists of a spatially sensitive large-area ion chamber, mounted at the collimator of the linear accelerator (linac), and a calculation algorithm to predict the detector signal for each beam segment. By comparing the measured and predicted signals the system validates the beam delivery. The current commercial version of IQM uses an analytic method to predict the signal, which requires a semi-empirical approach to determine and optimize various calculation parameters. The process of developing the calculation model is complex and time consuming, and moreover, the model cannot be easily generalized across various beam delivery platforms with different combinations of beam energy, beam flattening, beam shaping elements, and Linac models. Therefore, as an alternative solution, we investigated the feasibility of developing a machine learning (ML) method, using an artificial neural network (ANN), to predict the ion chamber signal. In developing an ANN, it is not necessary to explicitly account for each of the elements of beam interactions with various structures in the beam path to the ion chamber.

METHODS

The ANN was designed with multilayer perceptron (MLP). The input layer consisted of multiple features, derived from the geometrical characteristics of beam segments. Gradient descent error backpropagation technique was used to train the ANN. The combined training dataset included 270 rectangular fields, and 801 clinical IMRT fields delivered using 6 MV beams on Varian TrueBeam and Elekta Infinity . Each of 12 different ANN configurations (3 different sets of input features × 4 different sets of number of hidden nodes) was simulated 10 times with randomly selected 80% of data for training and the remaining data for validation.

RESULTS

Artificial neural networks with one hidden layer, consisting of 10 nodes, and 10 input features provided optimum results. Once the feature sets were extracted, the time required for the network training was on the order of a few minutes, and the time required to perform an output calculation per field was only fraction of a second. More than 95% of clinical intensity-modulated radiation therapy (IMRT) segments were calculated within ± 3.0% modeling error for Varian Truebeam (90% and ±3.3% for Elekta Infinity). A total of 3320 volumetric-modulated arc therapy (VMAT) segments from Truebeam were calculated using the ANN trained with IMRT fields. More than 95% of the cumulative VMAT beam segments were within 3.6% modeling error, similar to the performance for IMRT segments. In general the modeling error was found to be inversely proportional to the size and intensity of the beam segment.

CONCLUSIONS

A prototype ANN has been developed for predicting the signals of the IQM system, with substantially less efforts compared to the analytic model. The performance of the ANN was found to be at least equivalent to that of the analytic method, in terms of average and maximum error, for 6 MV beams on both Varian TrueBeam and Elekta Infinity platforms.

摘要

目的

积分质量监测器(IQM)是一种实时放射治疗束监测系统,它由一个空间敏感的大面积离子室组成,安装在直线加速器(linac)的准直器上,以及一个用于预测每个射束段探测器信号的计算算法。通过比较测量和预测的信号,系统验证了束流的传输。当前商业版本的 IQM 使用分析方法来预测信号,这需要采用半经验方法来确定和优化各种计算参数。建模过程复杂且耗时,而且,该模型不能轻易地推广到具有不同光束能量、光束平坦度、光束整形元件和直线加速器模型组合的各种束流传输平台。因此,作为替代解决方案,我们研究了使用人工神经网络(ANN)开发机器学习(ML)方法来预测离子室信号的可行性。在开发 ANN 时,不必显式地考虑与射束路径中各种结构相互作用的每个元素,就可以预测离子室的信号。

方法

ANN 采用多层感知器(MLP)设计。输入层由多个特征组成,这些特征来源于射束段的几何特征。使用梯度下降误差反向传播技术来训练 ANN。联合训练数据集包括 270 个矩形场和 801 个临床调强放射治疗(IMRT)场,这些场是在瓦里安 TrueBeam 和 Elekta Infinity 上用 6 MV 射线照射的。用 12 种不同的 ANN 配置(3 组不同的输入特征×4 组不同的隐藏节点数)中的每一种进行了 10 次模拟,其中 80%的数据是随机选择用于训练的,其余数据用于验证。

结果

具有一个隐藏层的 ANN,由 10 个节点和 10 个输入特征组成,提供了最佳结果。一旦提取了特征集,网络训练所需的时间就只有几分钟,并且每个场的输出计算所需的时间只有几分之一秒。对于瓦里安 Truebeam,超过 95%的临床调强放射治疗(IMRT)段的计算误差在±3.0%以内(对于 Elekta Infinity 为 90%和±3.3%)。使用从 Truebeam 训练的 ANN 计算了 3320 个容积调强弧形治疗(VMAT)段。超过 95%的累积 VMAT 束段的建模误差在 3.6%以内,与 IMRT 段的性能相似。一般来说,建模误差与束段的大小和强度成反比。

结论

已经开发了一个用于预测 IQM 系统信号的 ANN 原型,与分析模型相比,工作量大大减少。结果表明,在瓦里安 TrueBeam 和 Elekta Infinity 平台上,对于 6 MV 射线,ANN 的性能至少与分析方法相当,无论是平均误差还是最大误差。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验