Gautam Sudeep, Zhang Lisa, Arnaoutova Irina, Lee Cheol, Mansfield Brian C, Chou Janice Y
Section on Cellular Differentiation, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development.
Foundation Fighting Blindness, Columbia, MD 21046, USA.
Hum Mol Genet. 2020 Mar 27;29(5):834-844. doi: 10.1093/hmg/ddaa007.
Glucose-6-phosphatase-α (G6Pase-α or G6PC) deficiency in glycogen storage disease type-Ia (GSD-Ia) leads to impaired hepatic autophagy, a recycling process important for cellular metabolism and homeostasis. Autophagy can be regulated by several energy sensing pathways, including sirtuin 1 (SIRT1), forkhead box O (FoxO), AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor-α (PPAR-α), and mammalian target of rapamycin (mTOR). Using 10-day old global G6pc-deficient (G6pc-/-) mice, hepatic autophagy impairment was attributed to activation of mTOR and inhibition of AMPK signaling. In other studies, using adult liver-specific G6pc-deficient mice at both pre-tumor and tumor stages, hepatic autophagy impairment was attributed to downregulation of SIRT1 signaling and mTOR was not implicated. In this study, we provide a detailed analysis of the major autophagy pathways in young G6pc-/- mice over the first 4 weeks of life. We show that impaired SIRT1, FoxO3a, AMPK, and PPAR-α signaling are responsible for autophagy impairment but mTOR is involved minimally. Hepatic SIRT1 overexpression corrects defective autophagy, restores the expression of FoxO3a and liver kinase B1 but fails to normalize impaired PPAR-α expression or metabolic abnormalities associated with GSD-Ia. Importantly, restoration of hepatic G6Pase-α expression in G6pc-/- mice corrects defective autophagy, restores SIRT1/FoxO3a/AMPK/PPAR-α signaling and rectifies metabolic abnormalities. Taken together, these data show that hepatic autophagy impairment in GSD-Ia is mediated by downregulation of SIRT1/FoxO3a/AMPK/PPAR-α signaling.
糖原贮积病I型(GSD-Ia)中的葡萄糖-6-磷酸酶-α(G6Pase-α或G6PC)缺乏会导致肝脏自噬受损,自噬是一种对细胞代谢和内环境稳定很重要的循环过程。自噬可由几种能量感应途径调节,包括沉默调节蛋白1(SIRT1)、叉头框O(FoxO)、AMP激活的蛋白激酶(AMPK)、过氧化物酶体增殖物激活受体-α(PPAR-α)和雷帕霉素靶蛋白(mTOR)。使用10日龄的全身性G6pc基因缺陷(G6pc-/-)小鼠,肝脏自噬受损归因于mTOR的激活和AMPK信号传导的抑制。在其他研究中,使用处于肿瘤前期和肿瘤期的成年肝脏特异性G6pc基因缺陷小鼠,肝脏自噬受损归因于SIRT1信号传导的下调,且未涉及mTOR。在本研究中,我们对出生后前4周的幼年G6pc-/-小鼠的主要自噬途径进行了详细分析。我们发现,SIRT1、FoxO3a、AMPK和PPAR-α信号传导受损是自噬受损的原因,但mTOR的参与程度最小。肝脏SIRT1的过表达纠正了有缺陷的自噬,恢复了FoxO3a和肝脏激酶B1的表达,但未能使受损的PPAR-α表达或与GSD-Ia相关的代谢异常正常化。重要的是,在G6pc-/-小鼠中恢复肝脏G6Pase-α表达可纠正有缺陷的自噬,恢复SIRT1/FoxO3a/AMPK/PPAR-α信号传导并纠正代谢异常。综上所述,这些数据表明GSD-Ia中的肝脏自噬受损是由SIRT1/FoxO3a/AMPK/PPAR-α信号传导的下调介导的。