Walter Aurélie, Garofalo Antonio, Bonazza Pauline, Meyer Florent, Martinez Hervé, Fleutot Solenne, Billotey Claire, Taleb Jacqueline, Felder-Flesch Delphine, Begin-Colin Sylvie
Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, CNRS, Université de Strasbourg, 23, rue du Loess, BP 43, 67034, Strasbourg Cedex 2, France.
Université de Lyon, Université Jean Monnet, Equipe Mixte de Recherche 3738 "Ciblage Thérapeutique en Oncologie", Bâtiment 10- Locaux IMTHERNAT, Hôpital Edouard Herriot, 5 place d'Arsonval, 69437, Lyon cedex 03, France.
Chempluschem. 2017 Apr;82(4):647-659. doi: 10.1002/cplu.201700049.
The functionalization process of iron oxide nanoparticles (NPs) is a major step and has to ensure a small particle size distribution (below 100 nm) and to preserve good magnetic properties suitable for in vivo applications. Two functionalization processes are here compared to coat iron oxide NPs, synthesized by thermal decomposition, with dendron molecules bearing either a mono- or a bisphosphonate anchoring group. The two processes are direct ligand exchange and the simultaneous ligand exchange and phase transfer process. The latter process led to a larger size distribution than the former. The phosphonate group is confirmed to be a strong anchoring agent from X-ray photoelectron spectroscopy (XPS) and IR characterizations whatever the grafting process and the number of phosphonate groups, it also confirms the preservation of the NPs' magnetic properties. All dendronized NPs display good in vitro MRI properties and those obtained by direct exchange showed no cell internalization, an efficient in vivo MRI contrast enhancement, and elimination by both urinary and hepato-biliary ways.
氧化铁纳米颗粒(NPs)的功能化过程是一个重要步骤,必须确保小的粒径分布(低于100 nm),并保持适合体内应用的良好磁性。本文比较了两种功能化过程,用带有单膦酸酯或双膦酸酯锚定基团的树枝状分子包覆通过热分解合成的氧化铁NPs。这两种过程分别是直接配体交换以及同时进行的配体交换和相转移过程。后一种过程导致的粒径分布比前一种更大。无论接枝过程和膦酸酯基团的数量如何,通过X射线光电子能谱(XPS)和红外光谱表征证实膦酸酯基团是一种强锚定剂,这也证实了NPs磁性的保留。所有树枝状化的NPs都显示出良好的体外磁共振成像(MRI)特性,通过直接交换获得的那些NPs没有细胞内化现象,在体内具有有效的MRI对比增强效果,并通过尿液和肝胆途径排出。