Equipe Chimie des Polymères, Institut Parisien de Chimie Moléculaire (UMR-CNRS 8232) , Sorbonne Université , 75252 Paris , France.
Centro de Ciências Naturais e Humanas , Universidade Federal do ABC , 09210-580 Santo André , Brazil.
Langmuir. 2020 Feb 11;36(5):1266-1278. doi: 10.1021/acs.langmuir.9b03687. Epub 2020 Jan 30.
We herein demonstrate the outstanding protein-repelling characteristic of star-like micelles and polymersomes manufactured from amphiphilic block copolymers made by poly(butylene oxide) (PBO) hydrophobic segments and polyglycidol (PGL) hydrophilic outer shells. Although positively charged proteins (herein modeled by lysozyme) may adsorb onto the surface of micelles and polymersomes where the assemblies are stabilized by short PGL chains (degree of polymerization smaller than 15), the protein adsorption vanishes when the degree of polymerization of the hydrophilic segment (PGL) is higher than ∼20, regardless the morphology. This has been probed by using three different model proteins which are remarkably different concerning molecular weight, size, and zeta potential (bovine serum albumin (BSA), lysozyme, and immunoglobulin G (IgG)). Indeed, the adsorption of the most abundant plasma protein (herein modeled as BSA) is circumvented even by using very short PGL shells due to the highly negative zeta potential of the produced assemblies which presumably promote protein-nanoparticle electrostatic repulsion. The negative zeta potential, on the other hand, enables lysozyme adsorption, and the phenomenon is governed by electrostatic forces as evidenced by isothermal titration calorimetry. Nevertheless, the protein coating can be circumvented by slightly increasing the degree of polymerization of the hydrophilic segment. Notably, the PGL length required to circumvent protein fouling is significantly smaller than the one required for PEO. This feature and the safety concerns regarding the synthetic procedures on the preparation of poly(ethylene oxide)-based amphiphilic copolymers might make polyglycidol a promising alternative toward the production of nonfouling spherical particles.
我们在此展示了由亲水性嵌段共聚物(由聚氧化丁烯(PBO)疏水段和聚缩水甘油(PGL)亲水外壳制成)制成的星形胶束和聚合物囊的出色的蛋白质排斥特性。虽然带正电荷的蛋白质(在此通过溶菌酶模拟)可能会吸附到胶束和聚合物囊的表面,其中短 PGL 链(聚合度小于 15)稳定了组装体,但当亲水段(PGL)的聚合度高于约 20 时,无论形态如何,蛋白质吸附都会消失。这是通过使用三种不同的模型蛋白质来探测的,这些蛋白质在分子量、大小和 Zeta 电位方面有显著差异(牛血清白蛋白(BSA)、溶菌酶和免疫球蛋白 G(IgG))。事实上,即使使用非常短的 PGL 壳也可以避免最丰富的血浆蛋白(在此模拟为 BSA)的吸附,这是由于产生的组装体具有非常高的负 Zeta 电位,这可能会促进蛋白质-纳米颗粒静电排斥。另一方面,负 Zeta 电位使溶菌酶吸附,并且这种现象由等温滴定微量热法证明是由静电作用力控制的。然而,通过稍微增加亲水段的聚合度可以避免蛋白质涂层。值得注意的是,为避免蛋白质污染所需的 PGL 长度明显小于为 PEO 所需的长度。这种特性以及与制备基于聚氧化乙烯的两亲性共聚物的合成过程相关的安全问题可能使聚缩水甘油成为生产无污球形颗粒的有前途的替代品。