Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.
Research & Development, Weed Control Chemistry, Bayer AG, Crop Science Division, Industriepark Höchst, 65926, Frankfurt am Main, Germany.
Angew Chem Int Ed Engl. 2020 Mar 23;59(13):5359-5364. doi: 10.1002/anie.201916129. Epub 2020 Feb 20.
The catalytic enantioselective synthesis of α-fluorinated chiral tertiary alcohols from (hetero)aryl methyl ketones is described. The use of a bifunctional iminophosphorane (BIMP) superbase was found to facilitate direct aldol addition by providing the strong Brønsted basicity required for rapid aryl enolate formation. The new synthetic protocol is easy to perform and tolerates a broad range of functionalities and heterocycles with high enantioselectivity (up to >99:1 e.r.). Multi-gram scalability has been demonstrated along with catalyst recovery and recycling. H NMR studies identified a 1400-fold rate enhancement under BIMP catalysis, compared to the prior state-of-the-art catalytic system. The utility of the aldol products has been highlighted with the synthesis of various enantioenriched building blocks and heterocycles, including 1,3-aminoalcohol, 1,3-diol, oxetane, and isoxazoline derivatives.
描述了(杂)芳基甲基酮的 α-氟化手性叔醇的催化对映选择性合成。发现双功能亚磷酰胺(BIMP)超碱有利于通过提供快速芳基烯醇化物形成所需的强布朗斯特碱性来促进直接Aldol 添加。新的合成方案易于进行,并能容忍具有高对映选择性(高达>99:1 e.r.)的广泛官能团和杂环。已经证明了多克规模的可扩展性以及催化剂的回收和再循环。与先前的最先进的催化体系相比,H NMR 研究确定在 BIMP 催化下的速率增强了 1400 倍。通过合成各种对映体富集的构建块和杂环,包括 1,3-氨基醇、1,3-二醇、环氧乙烷和异恶唑啉衍生物,突出了 Aldol 产物的用途。