Advanced Algorithm Research Center, Philips Healthcare, Andover, MA, United States of America.
Physiol Meas. 2020 Mar 6;41(2):025005. doi: 10.1088/1361-6579/ab6e55.
To develop an automatic algorithm to detect strict left bundle branch block (LBBB) on electrocardiograms (ECG) and propose a procedure to test the consistency of neural network detections.
The database for the classification of strict LBBB was provided by Telemetric and Holter ECG Warehouse. It contained 10 s ECGs taken from the MADIT-CRT clinical trial. The database was divided into a training dataset (N = 300, strict LBBB = 174, non-strict LBBB = 126) and a test dataset (N = 302, strict LBBB = 156, non-strict LBBB = 146). LBBB-related features were extracted by Philips DXL algorithm, selected by a random forest classifier, and fed into a 5-layer neural network (NN) for the classification of strict LBBB on the training dataset. The performance of NN on the test dataset was compared to two random forest classifiers, an algorithm applying strict LBBB criteria, a wavelet-based approach, and a support-vector-machine approach. The consistency of NN's detection was tested on 549 2 min recordings of the PTB diagnostic ECG database. LBBB annotations are not required to measure consistency.
The performance of NN on the test dataset were sensitivity = 91. 7%, specificity = 85.6% and accuracy = 88.7% (PPV = 87.2%, NPV = 90.6%). The consistency score of strict-LBBB and non-strict-LBBB detection was 0.9341 and 0.9973 respectively.
NN achieved the highest specificity, accuracy, and PPV. Using random forest for feature selection and NN for classification increased interpretability and reduced computational cost. The consistency test showed that NN achieved high consistency scores in the detection of strict LBBB.
This work proposed an approach for selecting features and training NN for the detection of strict LBBB as well as a consistency test for black-box algorithms.
开发一种自动算法来检测心电图(ECG)中的完全左束支传导阻滞(LBBB),并提出一种测试神经网络检测一致性的程序。
严格 LBBB 分类的数据库由 Telemetric 和 Holter ECG 仓库提供。它包含来自 MADIT-CRT 临床试验的 10 秒 ECG。该数据库分为训练数据集(N=300,严格 LBBB=174,非严格 LBBB=126)和测试数据集(N=302,严格 LBBB=156,非严格 LBBB=146)。LBBB 相关特征由飞利浦 DXL 算法提取,由随机森林分类器选择,并输入到 5 层神经网络(NN)中,用于训练数据集上严格 LBBB 的分类。在测试数据集上,NN 的性能与两个随机森林分类器、一个应用严格 LBBB 标准的算法、一种基于小波的方法和一种支持向量机方法进行了比较。NN 的检测一致性在 PTB 诊断 ECG 数据库的 549 个 2 分钟记录上进行了测试。一致性测试不需要 LBBB 注释。
NN 在测试数据集上的性能为敏感性=91.7%,特异性=85.6%和准确性=88.7%(PPV=87.2%,NPV=90.6%)。严格-LBBB 和非严格-LBBB 检测的一致性评分分别为 0.9341 和 0.9973。
NN 实现了最高的特异性、准确性和 PPV。使用随机森林进行特征选择和 NN 进行分类提高了可解释性并降低了计算成本。一致性测试表明,NN 在严格 LBBB 的检测中达到了较高的一致性得分。
这项工作提出了一种用于检测严格 LBBB 的特征选择和 NN 训练方法,以及一种用于黑盒算法的一致性测试。