Department of Mechanical Engineering, National University of Singapore 10 Kent Ridge Crescent, Singapore 119260.
Phys Rev E. 2019 Dec;100(6-1):063308. doi: 10.1103/PhysRevE.100.063308.
In this work, a high-order (HO) least-square-based finite difference-finite volume (LSFD-FV) method together with thermal lattice Boltzmann flux solver (TLBFS) is presented for simulation of two-dimensional (2D) incompressible thermal flows on arbitrary grids. In the present method, a HO polynomial based on Taylor series expansion is applied within each control cell, where the unknown spatial derivatives at each cell center are approximated by least-square-based finite difference (LSFD) scheme. Then the recently developed TLBFS is applied to evaluate the convective and diffusive fluxes simultaneously at the cell interface by local reconstruction of thermal lattice Boltzmann solutions of the density and internal energy distribution functions. The present HO LSFD-FV method is verified and validated by 2D incompressible heat transfer problems. Numerical results indicate that the present method can be effectively and flexibly applied to solve thermal flow problems with curved boundaries on arbitrary grids. Compared with the conventional low-order finite volume method, higher efficiency and lower memory cost make the present HO method more promising for practical thermal flow problems.
在这项工作中,提出了一种基于高阶(HO)最小二乘的有限差分-有限体积(LSFD-FV)方法和热格子 Boltzmann 通量求解器(TLBFS),用于模拟任意网格上的二维(2D)不可压缩热流。在本方法中,在每个控制体中应用基于泰勒级数展开的高阶多项式,其中通过基于最小二乘的有限差分(LSFD)方案来近似每个单元中心的未知空间导数。然后,通过局部重构密度和内能分布函数的热格子 Boltzmann 解,应用新开发的 TLBFS 同时在单元界面处评估对流和扩散通量。通过二维不可压缩传热问题验证和验证了本 HO LSFD-FV 方法。数值结果表明,本方法可以有效地、灵活地应用于求解任意网格上具有弯曲边界的热流问题。与传统的低阶有限体积法相比,本 HO 方法具有更高的效率和更低的存储成本,使其更有希望应用于实际的热流问题。