Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA.
Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA.
Biomed Microdevices. 2020 Jan 21;22(1):15. doi: 10.1007/s10544-019-0466-x.
Droplet-based microfluidics technology allows for the generation and control of droplets that function as independent chemical and biological reactors, enabling broad ranges of high-throughput assays. As more complex multi-step assays are being realized in droplet format, maintaining droplet stability throughout the assay becomes a critical requirement. Unfortunately, as droplets go through multiple manipulation steps, droplet breakage is commonly seen, especially where droplets have to go through sharp transitions in direction and shape. Standard microfabrication techniques typically result in inherent sharp geometry in Z-direction due to their two-dimensional fabrication nature. Recent advancement in micro- and nano- fabrication technology using two-photon polymerization (2PP) is enabling complex 3D microstructures with sub-micrometer resolution to be readily fabricated. Here, utilizing this microfabrication technique, we present a simple solution to the droplet stability challenge by utilizing sloped-geometry microfluidic channels to enable microdroplets to smoothly transition between microfluidic channels having two different heights without breakage. The technique and innovation demonstrated here have the potential to replace conventional droplet microfluidic device fabrication approaches and enable droplet microfluidic platforms to achieve significantly higher level of efficiency, accuracy, and stability never realized before.
基于液滴的微流控技术允许生成和控制作为独立的化学和生物反应器的液滴,从而实现广泛的高通量分析。随着越来越复杂的多步分析在液滴形式中得以实现,在整个分析过程中保持液滴稳定性成为一个关键要求。不幸的是,由于液滴经历了多个操作步骤,液滴经常会破裂,特别是在液滴必须在方向和形状上进行急剧转变的情况下。由于其二维制造性质,标准微加工技术通常会导致 Z 方向上固有尖锐的几何形状。使用双光子聚合(2PP)的微纳加工技术的最新进展使得具有亚微米分辨率的复杂 3D 微结构能够轻松制造。在这里,我们利用这种微加工技术,通过使用倾斜几何形状的微流道来解决液滴稳定性挑战,使微液滴能够在没有破裂的情况下平稳地在具有两个不同高度的微流道之间进行转换。这里展示的技术和创新有可能取代传统的液滴微流控器件制造方法,并使液滴微流控平台实现以前从未实现过的更高效率、精度和稳定性。