Heilmann Martin, Prikhodko Alexander S, Hanke Michael, Sabelfeld Alexander, Borgardt Nikolai I, Lopes J Marcelo J
Leibniz-Institut im Forschungsverbund Berlin e.V. , Paul-Drude-Institut für Festkörperelektronik , Hausvogteiplatz 5-7 , 10117 Berlin , Germany.
National Research University of Electronic Technology (MIET) , Zelenograd 124498 , Moscow , Russia.
ACS Appl Mater Interfaces. 2020 Feb 19;12(7):8897-8907. doi: 10.1021/acsami.9b21490. Epub 2020 Feb 4.
Combining graphene and the insulating hexagonal boron nitride (h-BN) into two-dimensional heterostructures is promising for novel, atomically thin electronic nanodevices. A heteroepitaxial growth, in which these materials are grown on top of each other, will be crucial for their scalable device integration. However, during this so-called van der Waals epitaxy, not only the atomically thin substrate itself must be considered but also the influences from the supporting substrate below it. Here, we report not only a substantial difference between the formation of h-BN on single- (SLG) and on bi-layer epitaxial graphene (BLG) on SiC, but also vice versa, that the van der Waals epitaxy of h-BN at growth temperatures well below 1000 °C affects the varying number of graphene layers differently. Our results clearly demonstrate that the additional graphene layer in BLG enhances the distance to the corrugated, carbon-rich interface of the supporting SiC substrate and thereby diminishes its influence on the van der Waals epitaxy, leading to a homogeneous formation of a smooth, atomically thin heterostructure, which will be required for a scalable device integration of 2D heterostructures.
将石墨烯与绝缘的六方氮化硼(h-BN)结合形成二维异质结构,对于新型的原子级超薄电子纳米器件而言颇具前景。这些材料相互堆叠生长的异质外延生长,对于其可扩展的器件集成至关重要。然而,在这种所谓的范德华外延过程中,不仅必须考虑原子级超薄的衬底本身,还需考虑其下方支撑衬底的影响。在此,我们不仅报道了在碳化硅上的单层(SLG)和双层外延石墨烯(BLG)上形成h-BN之间存在显著差异,反之亦然,即在远低于1000°C的生长温度下,h-BN的范德华外延对不同数量的石墨烯层有不同影响。我们的结果清楚地表明,BLG中的额外石墨烯层增加了与支撑碳化硅衬底的波纹状、富碳界面的距离,从而减少了其对范德华外延的影响,导致形成均匀的、光滑的、原子级超薄异质结构,这是二维异质结构可扩展器件集成所必需的。