Suppr超能文献

纠正单分子光漂白测量中的系统偏差。

Correction of Systematic Bias in Single Molecule Photobleaching Measurements.

机构信息

Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India.

Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India.

出版信息

Biophys J. 2020 Mar 10;118(5):1101-1108. doi: 10.1016/j.bpj.2019.12.034. Epub 2020 Jan 11.

Abstract

Single molecule photobleaching is a powerful technique to measure the number of fluorescent units in subresolution molecular complexes, such as in toxic protein oligomers associated with amyloid diseases. However, photobleaching can occur before the sample is appropriately placed and focused. Such "prebleaching" can introduce a strong systematic bias toward smaller oligomers. Quantitative correction of prebleaching is known to be an ill-posed problem, limiting the utility of the technique. Here, we provide an experimental solution to improve its reliability. We chemically construct multimeric standards to estimate the prebleaching probability, B. We show that B can be used as a constraint to reliably correct the statistics obtained from a known distribution of standard oligomers. Finally, we apply this method to the data obtained from a heterogeneous oligomeric solution of human islet amyloid polypeptide. Our results show that photobleaching can critically skew the estimation of oligomeric distributions, so that low abundance monomers display a much higher apparent abundance. In summary, any inference from photobleaching experiments with B > 0.1 is likely to be unreliable, but our method can be used to quantitatively correct possible errors.

摘要

单分子光漂白是一种强大的技术,可以测量亚分辨率分子复合物中的荧光单位数量,例如与淀粉样疾病相关的毒性蛋白寡聚体。然而,在适当放置和聚焦样品之前,可能会发生光漂白。这种“预漂白”会导致较小寡聚体的强烈系统偏差。已知预漂白的定量校正存在不适定性问题,限制了该技术的实用性。在这里,我们提供了一个实验解决方案来提高其可靠性。我们通过化学构建多聚体标准来估计预漂白概率 B。我们表明,B 可以用作从已知标准寡聚体分布中获得的数据的可靠校正的约束。最后,我们将此方法应用于从人胰岛淀粉样多肽的异质寡聚体溶液中获得的数据。我们的结果表明,光漂白会严重影响寡聚体分布的估计,以至于低丰度单体显示出高得多的表观丰度。总之,B > 0.1 的光漂白实验的任何推断都可能不可靠,但我们的方法可用于定量校正可能的错误。

相似文献

1
Correction of Systematic Bias in Single Molecule Photobleaching Measurements.
Biophys J. 2020 Mar 10;118(5):1101-1108. doi: 10.1016/j.bpj.2019.12.034. Epub 2020 Jan 11.
3
Membrane affinity of individual toxic protein oligomers determined at the single-molecule level.
Phys Chem Chem Phys. 2020 Jul 8;22(26):14613-14620. doi: 10.1039/d0cp00450b.
5
Monitoring Changes in the Oligomeric State of a Candidate Endoplasmic Reticulum (ER) Ceramide Sensor by Single-molecule Photobleaching.
J Biol Chem. 2016 Nov 18;291(47):24735-24746. doi: 10.1074/jbc.M116.749812. Epub 2016 Oct 10.
6
Inferring subunit stoichiometry from single molecule photobleaching.
J Gen Physiol. 2013 Jun;141(6):737-46. doi: 10.1085/jgp.201310988.
7
Monitoring the earliest amyloid-beta oligomers via quantized photobleaching of dye-labeled peptides.
Anal Biochem. 2008 Nov 1;382(1):29-34. doi: 10.1016/j.ab.2008.07.011. Epub 2008 Jul 19.
8
Fluorescence Methods for Unraveling Oligomeric Amyloid Intermediates.
Methods Mol Biol. 2016;1345:151-69. doi: 10.1007/978-1-4939-2978-8_10.
9
Single Molecule Characterization of Amyloid Oligomers.
Molecules. 2021 Feb 11;26(4):948. doi: 10.3390/molecules26040948.
10
Spatial Intensity Distribution Analysis Reveals Abnormal Oligomerization of Proteins in Single Cells.
Biophys J. 2015 Aug 18;109(4):710-21. doi: 10.1016/j.bpj.2015.06.068.

引用本文的文献

1
Determining the Stoichiometry of Amyloid Oligomers by Single-Molecule Photobleaching.
Methods Mol Biol. 2022;2538:55-74. doi: 10.1007/978-1-0716-2529-3_5.
2
Single Molecule Measurements of the Accessibility of Molecular Surfaces.
Front Mol Biosci. 2021 Dec 1;8:745313. doi: 10.3389/fmolb.2021.745313. eCollection 2021.
3
Illuminating amyloid fibrils: Fluorescence-based single-molecule approaches.
Comput Struct Biotechnol J. 2021 Aug 13;19:4711-4724. doi: 10.1016/j.csbj.2021.08.017. eCollection 2021.
4
Single-molecule microscopy for in-cell quantification of protein oligomeric stoichiometry.
Curr Opin Struct Biol. 2021 Feb;66:112-118. doi: 10.1016/j.sbi.2020.10.022. Epub 2020 Nov 23.

本文引用的文献

2
Aggregation-induced conformation changes dictate islet amyloid polypeptide (IAPP) membrane affinity.
Biochim Biophys Acta Biomembr. 2018 Sep;1860(9):1734-1740. doi: 10.1016/j.bbamem.2018.03.027. Epub 2018 Apr 4.
3
TrackMate: An open and extensible platform for single-particle tracking.
Methods. 2017 Feb 15;115:80-90. doi: 10.1016/j.ymeth.2016.09.016. Epub 2016 Oct 3.
4
A starting point for fluorescence-based single-molecule measurements in biomolecular research.
Molecules. 2014 Sep 30;19(10):15824-65. doi: 10.3390/molecules191015824.
5
Elucidating the aggregation number of dopamine-induced α-synuclein oligomeric assemblies.
Biophys J. 2014 Jan 21;106(2):440-6. doi: 10.1016/j.bpj.2013.12.009.
7
Inferring subunit stoichiometry from single molecule photobleaching.
J Gen Physiol. 2013 Jun;141(6):737-46. doi: 10.1085/jgp.201310988.
8
AMPA receptor/TARP stoichiometry visualized by single-molecule subunit counting.
Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):5163-8. doi: 10.1073/pnas.1218765110. Epub 2013 Mar 11.
9
Molecular composition of sub-stoichiometrically labeled α-synuclein oligomers determined by single-molecule photobleaching.
Angew Chem Int Ed Engl. 2012 Aug 27;51(35):8821-4. doi: 10.1002/anie.201200813. Epub 2012 Jul 13.
10
Single molecule fluorescence study of the Bacillus thuringiensis toxin Cry1Aa reveals tetramerization.
J Biol Chem. 2011 Dec 9;286(49):42274-42282. doi: 10.1074/jbc.M111.296103. Epub 2011 Oct 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验