Computer Vision Center (CVC), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain.
Computer Science Department, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain.
Sensors (Basel). 2020 Jan 21;20(3):583. doi: 10.3390/s20030583.
On-board vision systems may need to increase the number of classes that can be recognized in a relatively short period. For instance, a traffic sign recognition system may suddenly be required to recognize new signs. Since collecting and annotating samples of such new classes may need more time than we wish, especially for uncommon signs, we propose a method to generate these samples by combining synthetic images and Generative Adversarial Network (GAN) technology. In particular, the GAN is trained on synthetic and real-world samples from known classes to perform synthetic-to-real domain adaptation, but applied to synthetic samples of the new classes. Using the Tsinghua dataset with a synthetic counterpart, SYNTHIA-TS, we have run an extensive set of experiments. The results show that the proposed method is indeed effective, provided that we use a proper Convolutional Neural Network (CNN) to perform the traffic sign recognition (classification) task as well as a proper GAN to transform the synthetic images. Here, a ResNet101-based classifier and domain adaptation based on CycleGAN performed extremely well for a ratio ∼ 1 / 4 for new/known classes; even for more challenging ratios such as ∼ 4 / 1 , the results are also very positive.
车载视觉系统可能需要在相对较短的时间内增加可识别的类别数量。例如,交通标志识别系统可能突然需要识别新的标志。由于收集和注释此类新类别的样本可能需要比我们希望的更多时间,特别是对于不常见的标志,因此我们提出了一种通过组合合成图像和生成对抗网络 (GAN) 技术生成这些样本的方法。特别是,GAN 在来自已知类别的合成和真实世界样本上进行训练,以执行合成到真实域自适应,但应用于新类别的合成样本。使用具有合成对应物的清华大学数据集 Tsinghua 数据集和 SYNTHIA-TS,我们进行了广泛的实验。结果表明,所提出的方法确实有效,只要我们使用适当的卷积神经网络 (CNN) 执行交通标志识别 (分类) 任务以及适当的 GAN 来转换合成图像。在这里,基于 ResNet101 的分类器和基于 CycleGAN 的域自适应对于新/已知类别的比例约为 1/4 表现非常出色;即使对于更具挑战性的比例,例如 4/1,结果也非常积极。