Suppr超能文献

基于中级特征匹配的零样本交通标志识别

Zero-Shot Traffic Sign Recognition Based on Midlevel Feature Matching.

作者信息

Gan Yaozong, Li Guang, Togo Ren, Maeda Keisuke, Ogawa Takahiro, Haseyama Miki

机构信息

Graduate School of Information Science and Technology, Hokkaido University, N-14, W-9, Kita-ku, Sapporo 060-0814, Japan.

Education and Research Center for Mathematical and Data Science, Hokkaido University, N-12, W-7, Kita-Ku, Sapporo 060-0812, Japan.

出版信息

Sensors (Basel). 2023 Dec 4;23(23):9607. doi: 10.3390/s23239607.

Abstract

Traffic sign recognition is a complex and challenging yet popular problem that can assist drivers on the road and reduce traffic accidents. Most existing methods for traffic sign recognition use convolutional neural networks (CNNs) and can achieve high recognition accuracy. However, these methods first require a large number of carefully crafted traffic sign datasets for the training process. Moreover, since traffic signs differ in each country and there is a variety of traffic signs, these methods need to be fine-tuned when recognizing new traffic sign categories. To address these issues, we propose a traffic sign matching method for zero-shot recognition. Our proposed method can perform traffic sign recognition without training data by directly matching the similarity of target and template traffic sign images. Our method uses the midlevel features of CNNs to obtain robust feature representations of traffic signs without additional training or fine-tuning. We discovered that midlevel features improve the accuracy of zero-shot traffic sign recognition. The proposed method achieves promising recognition results on the German Traffic Sign Recognition Benchmark open dataset and a real-world dataset taken from Sapporo City, Japan.

摘要

交通标志识别是一个复杂且具有挑战性但很热门的问题,它可以帮助路上的驾驶员并减少交通事故。大多数现有的交通标志识别方法使用卷积神经网络(CNN),并且可以实现较高的识别准确率。然而,这些方法首先需要大量精心制作的交通标志数据集用于训练过程。此外,由于每个国家的交通标志不同且种类繁多,这些方法在识别新的交通标志类别时需要进行微调。为了解决这些问题,我们提出了一种用于零样本识别的交通标志匹配方法。我们提出的方法可以通过直接匹配目标和模板交通标志图像的相似度来在没有训练数据的情况下进行交通标志识别。我们的方法使用CNN的中层特征来获得交通标志的鲁棒特征表示,而无需额外的训练或微调。我们发现中层特征提高了零样本交通标志识别的准确率。所提出的方法在德国交通标志识别基准开放数据集和从日本札幌市获取的真实世界数据集上取得了有前景的识别结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abe8/10708787/c308907ab5f1/sensors-23-09607-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验