Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
Hum Mol Genet. 2020 Apr 15;29(6):944-954. doi: 10.1093/hmg/ddaa015.
Duchenne muscular dystrophy (DMD) is a devastating neuromuscular disease that causes progressive muscle wasting and cardiomyopathy. This X-linked disease results from mutations of the DMD allele on the X-chromosome resulting in the loss of expression of the protein dystrophin. Dystrophin loss causes cellular dysfunction that drives the loss of healthy skeletal muscle and cardiomyocytes. As gene therapy strategies strive toward dystrophin restoration through micro-dystrophin delivery or exon skipping, preclinical models have shown that incomplete restoration in the heart results in heterogeneous dystrophin expression throughout the myocardium. This outcome prompts the question of how much dystrophin restoration is sufficient to rescue the heart from DMD-related pathology. Female DMD carrier hearts can shed light on this question, due to their mosaic cardiac dystrophin expression resulting from random X-inactivation. In this work, a dystrophinopathy carrier mouse model was derived by breeding male or female dystrophin-null mdx mice with a wild type mate. We report that these carrier hearts are significantly susceptible to injury induced by one or multiple high doses of isoproterenol, despite expressing ~57% dystrophin. Importantly, only carrier mice with dystrophic mothers showed mortality after isoproterenol. These findings indicate that dystrophin restoration in approximately half of the heart still allows for marked vulnerability to injury. Additionally, the discovery of divergent stress-induced mortality based on parental origin in mice with equivalent dystrophin expression underscores the need for better understanding of the epigenetic, developmental, and even environmental factors that may modulate vulnerability in the dystrophic heart.
杜氏肌营养不良症(DMD)是一种严重的神经肌肉疾病,可导致进行性肌肉萎缩和心肌病。这种 X 连锁疾病是由于 X 染色体上的 DMD 等位基因突变,导致蛋白肌营养不良蛋白的表达缺失。肌营养不良蛋白的缺失导致细胞功能障碍,从而导致健康的骨骼肌和心肌细胞的丧失。随着基因治疗策略努力通过微肌营养不良蛋白传递或外显子跳跃来恢复肌营养不良蛋白,临床前模型表明,心脏的不完全恢复导致心肌中不均匀的肌营养不良蛋白表达。这一结果提出了一个问题,即需要多少肌营养不良蛋白恢复才能使心脏免受 DMD 相关病理的影响。由于女性 DMD 携带者的心脏存在随机 X 染色体失活导致的心肌肌营养不良蛋白镶嵌表达,因此可以为这个问题提供一些线索。在这项工作中,通过将雄性或雌性肌营养不良蛋白缺失 mdx 小鼠与野生型配偶交配,衍生出一种肌营养不良蛋白病携带者小鼠模型。我们报告说,尽管这些携带心脏表达约 57%的肌营养不良蛋白,但它们对异丙肾上腺素诱导的损伤非常敏感。重要的是,只有携带肌营养不良蛋白的母亲的携带心脏在异丙肾上腺素后才会出现死亡。这些发现表明,即使心脏中恢复了大约一半的肌营养不良蛋白,仍然会导致明显的易受伤性。此外,在具有等效肌营养不良蛋白表达的携带心脏中,基于亲本起源的不同应激诱导死亡率的发现突显了需要更好地理解表观遗传、发育甚至环境因素,这些因素可能会调节肌营养不良心脏的脆弱性。