Suppr超能文献

无探测器关联的相空间分布。

Detector-Agnostic Phase-Space Distributions.

机构信息

Integrated Quantum Optics Group, Applied Physics, University of Paderborn, 33098 Paderborn, Germany.

Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom.

出版信息

Phys Rev Lett. 2020 Jan 10;124(1):013605. doi: 10.1103/PhysRevLett.124.013605.

Abstract

The representation of quantum states via phase-space functions constitutes an intuitive technique to characterize light. However, the reconstruction of such distributions is challenging as it demands specific types of detectors and detailed models thereof to account for their particular properties and imperfections. To overcome these obstacles, we derive and implement a measurement scheme that enables a reconstruction of phase-space distributions for arbitrary states whose functionality does not depend on the knowledge of the detectors, thus defining the notion of detector-agnostic phase-space distributions. Our theory presents a generalization of well-known phase-space quasiprobability distributions, such as the Wigner function. We implement our measurement protocol, using state-of-the-art transition-edge sensors without performing a detector characterization. Based on our approach, we reveal the characteristic features of heralded single- and two-photon states in phase space and certify their nonclassicality with high statistical significance.

摘要

通过相位空间函数来表示量子态是一种直观的方法,可以用来描述光的特性。然而,由于这种分布的重建需要特定类型的探测器和详细的模型来考虑它们的特殊性质和不完美性,因此重建这样的分布是具有挑战性的。为了克服这些障碍,我们推导出并实现了一种测量方案,该方案能够对任意态的相位空间分布进行重建,而这种重建的功能不依赖于探测器的知识,从而定义了探测器无关的相位空间分布的概念。我们的理论提出了一种对著名的相位空间拟概率分布的推广,例如威格纳函数。我们使用最先进的相变边缘传感器来实现我们的测量协议,而无需进行探测器特性描述。基于我们的方法,我们揭示了在相位空间中被标记的单光子和双光子态的特征,并以高统计显著性证明了它们的非经典性。

相似文献

1
Detector-Agnostic Phase-Space Distributions.
Phys Rev Lett. 2020 Jan 10;124(1):013605. doi: 10.1103/PhysRevLett.124.013605.
2
Incomplete Detection of Nonclassical Phase-Space Distributions.
Phys Rev Lett. 2018 Feb 9;120(6):063607. doi: 10.1103/PhysRevLett.120.063607.
4
Nonclassicality phase-space functions: more insight with fewer detectors.
Phys Rev Lett. 2015 Mar 13;114(10):103602. doi: 10.1103/PhysRevLett.114.103602. Epub 2015 Mar 11.
5
Experimental Certification of Nonclassicality via Phase-Space Inequalities.
Phys Rev Lett. 2021 Jan 15;126(2):023605. doi: 10.1103/PhysRevLett.126.023605.
6
Phase-Space Inequalities Beyond Negativities.
Phys Rev Lett. 2020 Apr 3;124(13):133601. doi: 10.1103/PhysRevLett.124.133601.
7
Detector-Independent Verification of Quantum Light.
Phys Rev Lett. 2017 Apr 21;118(16):163602. doi: 10.1103/PhysRevLett.118.163602.
8
Identification of nonclassical properties of light with multiplexing layouts.
Phys Rev A (Coll Park). 2017 Jul;96(1). doi: 10.1103/PhysRevA.96.013804. Epub 2017 Jul 6.
9
Conditional Hybrid Nonclassicality.
Phys Rev Lett. 2017 Sep 22;119(12):120403. doi: 10.1103/PhysRevLett.119.120403. Epub 2017 Sep 21.
10
Quantum process nonclassicality.
Phys Rev Lett. 2013 Apr 19;110(16):160401. doi: 10.1103/PhysRevLett.110.160401.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验