Department of Biology, Division of Biotechnology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany.
Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Medical Center, Erlangen, Germany.
J Biol Chem. 2020 Mar 6;295(10):3189-3201. doi: 10.1074/jbc.RA119.011546. Epub 2020 Jan 24.
Herpesviruses uniquely express two essential nuclear egress-regulating proteins forming a heterodimeric basic structure of the nuclear egress complex (core NEC). These core NECs serve as a hexameric lattice-structured platform for capsid docking and recruit viral and cellular NEC-associated factors that jointly exert nuclear lamina- and membrane-rearranging functions (multicomponent NEC). Here, we report the X-ray structures of β- and γ-herpesvirus core NECs obtained through an innovative recombinant expression strategy based on NEC-hook::NEC-groove protein fusion constructs. This approach yielded the first structure of γ-herpesviral core NEC, namely the 1.56 Å structure of Epstein-Barr virus (EBV) BFRF1-BFLF2, as well as an increased resolution 1.48 Å structure of human cytomegalovirus (HCMV) pUL50-pUL53. Detailed analysis of these structures revealed that the prominent hook segment is absolutely required for core NEC formation and contributes approximately 80% of the interaction surface of the globular domains of NEC proteins. Moreover, using HCMV::EBV hook domain swap constructs, computational prediction of the roles of individual hook residues for binding, and quantitative binding assays with synthetic peptides presenting the HCMV- and EBV-specific NEC hook sequences, we characterized the unique hook-into-groove NEC interaction at various levels. Although the overall physicochemical characteristics of the protein interfaces differ considerably in these β- and γ-herpesvirus NECs, the binding free energy contributions of residues displayed from identical positions are similar. In summary, the results of our study reveal critical details of the molecular mechanism of herpesviral NEC interactions and highlight their potential as an antiviral drug target.
疱疹病毒独特地表达两种必需的核出芽调节蛋白,形成核出芽复合物(核心 NEC)的异二聚基本结构。这些核心 NEC 充当衣壳对接的六聚体晶格结构平台,并招募病毒和细胞 NEC 相关因子,共同发挥核层和膜重排功能(多组分 NEC)。在这里,我们通过基于 NEC 钩::NEC 槽蛋白融合构建体的创新重组表达策略,报告了β-和γ-疱疹病毒核心 NEC 的 X 射线结构。这种方法产生了第一个γ-疱疹病毒核心 NEC 的结构,即 EBV 的 BFRF1-BFLF2 的 1.56 Å 结构,以及人巨细胞病毒(HCMV)pUL50-pUL53 的分辨率提高到 1.48 Å 的结构。对这些结构的详细分析表明,突出的钩段对于核心 NEC 的形成是绝对必需的,并且贡献了大约 80%的 NEC 蛋白球状结构域相互作用表面。此外,使用 HCMV::EBV 钩结构域交换构建体,对单个钩残基结合的作用进行计算预测,并用呈现 HCMV 和 EBV 特异性 NEC 钩序列的合成肽进行定量结合测定,我们在各个水平上表征了独特的钩入槽 NEC 相互作用。尽管这些β-和γ-疱疹病毒 NEC 中的蛋白质界面的整体物理化学特性有很大差异,但从相同位置显示的残基的结合自由能贡献是相似的。总之,我们研究的结果揭示了疱疹病毒 NEC 相互作用的分子机制的关键细节,并强调了它们作为抗病毒药物靶点的潜力。