Suppr超能文献

用于物理不可克隆防伪标签的间隙增强拉曼标签。

Gap-enhanced Raman tags for physically unclonable anticounterfeiting labels.

机构信息

State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China.

School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China.

出版信息

Nat Commun. 2020 Jan 24;11(1):516. doi: 10.1038/s41467-019-14070-9.

Abstract

Anticounterfeiting labels based on physical unclonable functions (PUFs), as one of the powerful tools against counterfeiting, are easy to generate but difficult to duplicate due to inherent randomness. Gap-enhanced Raman tags (GERTs) with embedded Raman reporters show strong intensity enhancement and ultra-high photostability suitable for fast and repeated readout of PUF labels. Herein, we demonstrate a PUF label fabricated by drop-casting aqueous GERTs, high-speed read using a confocal Raman system, digitized through coarse-grained coding methods, and authenticated via pixel-by-pixel comparison. A three-dimensional encoding capacity of over 3 × 10 can be achieved for the labels composed of ten types of GERTs with a mapping resolution of 2500 pixels and quaternary encoding of Raman intensity levels at each pixel. Authentication experiments have ensured the robustness and security of the PUF system, and the practical viability is demonstrated. Such PUF labels could provide a potential platform to realize unbreakable anticounterfeiting.

摘要

基于物理不可克隆函数(PUF)的防伪标签是一种防伪的有力工具,由于其固有的随机性,这些标签易于生成但难以复制。具有嵌入式 Raman 报告器的间隙增强 Raman 标签(GERT)具有强烈的强度增强和超高的光稳定性,非常适合快速和重复读取 PUF 标签。在此,我们展示了一种通过滴铸水性 GERT 制备的 PUF 标签,使用共焦 Raman 系统进行高速读取,通过粗粒度编码方法进行数字化,并通过逐像素比较进行身份验证。由十种 GERT 组成的标签可实现超过 3×10 的三维编码容量,映射分辨率为 2500 像素,每个像素的 Raman 强度水平进行四进制编码。身份验证实验确保了 PUF 系统的稳健性和安全性,并证明了其实际可行性。这种 PUF 标签可以为实现不可破解的防伪提供一个潜在的平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/609f/6981139/9c82034ff6aa/41467_2019_14070_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验