Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Aachen, Germany.
Welding and Joining Institute, RWTH Aachen University, Aachen, Germany.
J Biomed Mater Res B Appl Biomater. 2020 Jul;108(5):2218-2226. doi: 10.1002/jbm.b.34559. Epub 2020 Jan 25.
Titanium-based alloys, for example, Ti6Al4V, are frequently employed for load-bearing orthopedic and dental implants. Growth of new bone tissue and therefore osseointegration can be promoted by the implant's microtopography, which can lead to improved long-term stability of the implant. This study investigates the effect that an organized, periodical microstructure produced by an electron beam (EB) technique has on the viability, morphology, and osteogenic differentiation capacity of human mesenchymal stromal cells (hMSC) in vitro. The technique generates topographical features of 20 μm in height with varying distances of 80-240 μm. Applied alterations of the surface roughness and local alloy composition do not impair hMSC viability (>94%) or proliferation. A favorable growth of hMSC onto the structure peaks and well-defined focal adhesions of the analyzed cells to the electron beam microstructured surfaces is verified. The morphological adaptation of hMSC to the underlying topography is detected using a three-dimensional (3D) visualization. In addition to the morphological changes, an increase in the expression of osteogenic markers such as osteocalcin (up to 17-fold) and osteoprotegerin (up to sixfold) is observed. Taken together, these results imply that the proposed periodical microstucturing method could potentially accelerate and enhance osseointegration of titanium-based bone implants.
例如,钛基合金,如 Ti6Al4V,常用于承重的骨科和牙科植入物。植入物的微观形貌可以促进新骨组织的生长,从而提高植入物的长期稳定性。本研究探讨了电子束 (EB) 技术产生的有序、周期性微观结构对体外人间充质基质细胞 (hMSC) 的活力、形态和成骨分化能力的影响。该技术可生成高度为 20 μm、距离为 80-240 μm 的周期性微观结构。表面粗糙度和局部合金成分的应用变化不会损害 hMSC 的活力(>94%)或增殖。分析细胞的结构峰上 hMSC 的有利生长和对电子束微结构表面的明确焦点粘附得到了验证。使用三维(3D)可视化检测 hMSC 对基础形貌的形态适应。除了形态变化外,还观察到骨钙素(高达 17 倍)和骨保护素(高达 6 倍)等成骨标志物的表达增加。总之,这些结果表明,所提出的周期性微结构方法有可能加速和增强基于钛的骨植入物的骨整合。