Suppr超能文献

主动人体剂量预测:20 年默克经验的教训,案例研究说明。

Prediction of active human dose: learnings from 20 years of Merck KGaA experience, illustrated by case studies.

机构信息

Translational Quantitative Pharmacology, Translational Medicine, Biopharma, Global R&D, Merck Healthcare, Frankfurter Str. 250, 64293 Darmstadt, Germany.

Drug Metabolism and Disposition, Discovery Technology, Biopharma, Global R&D, Merck Healthcare, Frankfurter Str. 250, 64293 Darmstadt, Germany.

出版信息

Drug Discov Today. 2020 May;25(5):909-919. doi: 10.1016/j.drudis.2020.01.002. Epub 2020 Jan 22.

Abstract

High-quality dose predictions based on a good understanding of target engagement is one of the main translational goals in drug development. Here, we systematically evaluate active human dose predictions for 15 Merck KGaA/EMD Serono assets spanning several modalities and therapeutic areas. Using case studies, we illustrate the value of adhering to the translational best practices of having an exposure-response relationship in an appropriate animal model; having validated, translatable pharmacodynamic (PD) biomarkers measurable in Phase I populations in the right tissue; having a deeper understanding of biology; and capturing uncertainties in predictions. Given the gap in publications on the subject, we believe that the learnings from this unique diverse data set, which are generic to the industry, will trigger actions to improve future predictions.

摘要

基于对靶点结合的深入理解来进行高质量的剂量预测是药物研发的主要转化目标之一。在此,我们系统性地评估了默克公司/EMD 施贵宝旗下的 15 个资产的人类主动剂量预测结果,这些资产涵盖了多种治疗模式和治疗领域。通过案例研究,我们说明了坚持转化最佳实践的重要性,这些实践包括在合适的动物模型中建立暴露-反应关系、在合适的组织中具有可测量的经验证的、可转化的药效学(PD)生物标志物、对生物学有更深入的理解以及捕捉预测中的不确定性。鉴于目前在这方面的出版物存在差距,我们认为,从这个独特的多样化数据集中学到的知识具有普遍性,将促使人们采取行动,以改善未来的预测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验