Pacific Northwest National Laboratory, Richland, WA, United States of America.
Pacific Northwest National Laboratory, Richland, WA, United States of America.
Sci Total Environ. 2020 May 10;716:132820. doi: 10.1016/j.scitotenv.2019.06.166. Epub 2019 Jun 12.
Radioiodine-129 (I) in the subsurface is mobile and limited information is available on treatment technologies. Scientific literature was reviewed to compile information on materials that could potentially be used to immobilize I through sorption and redox-driven processes, with an emphasis on ex-situ processes. Candidate materials to immobilize I include iron minerals, sulfur-based materials, silver-based materials, bismuth-based materials, ion exchange resins, activated carbon, modified clays, and tailored materials (metal organic frameworks (MOFS), layered double hydroxides (LDHs) and aerogels). Where available, compiled information includes material performance in terms of (i) capacity for I uptake; (ii) long-term performance (i.e., solubility of a precipitated phase); (iii) technology maturity; (iv) cost; (v) available quantity; (vi) environmental impact; (vii) ability to emplace the technology for in situ use at the field-scale; and (viii) ex situ treatment (for media extracted from the subsurface or secondary waste streams). Because it can be difficult to compare materials due to differences in experimental conditions applied in the literature, materials will be selected for subsequent standardized batch loading tests.
地下水中的放射性碘-129(I)是移动的,关于处理技术的信息有限。本文回顾了科学文献,以编译可能通过吸附和氧化还原驱动过程来固定 I 的潜在材料的信息,重点是异位过程。潜在的固定 I 的候选材料包括铁矿物、含硫材料、含银材料、含铋材料、离子交换树脂、活性炭、改性粘土和定制材料(金属有机骨架(MOFS)、层状双氢氧化物(LDHs)和气凝胶)。在可用的情况下,编译的信息包括材料的性能,包括:(i) 对 I 摄取的容量;(ii) 长期性能(即沉淀相的溶解度);(iii) 技术成熟度;(iv) 成本;(v) 可用数量;(vi) 环境影响;(vii) 能够在现场尺度上进行原位使用的能力;以及 (viii) 异位处理(用于从地下或二次废物流中提取的介质)。由于文献中应用的实验条件存在差异,因此很难比较材料,因此将选择材料进行后续的标准化批量加载测试。