Department of Biomedical Engineering, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Guntur, India.
Department of Medicine, School of Medicine, Jeju National University, Jeju, Republic of Korea.
Ultrasound Med Biol. 2020 Apr;46(4):1001-1014. doi: 10.1016/j.ultrasmedbio.2019.10.023. Epub 2020 Jan 23.
This study considers the temperature-dependent thermal parameters (specific heat capacity, thermal diffusivity and thermal conductivity) used when predicting the temperature rise of tissue exposed to high-intensity focused ultrasound (HIFU). Numerical analysis was performed using the Khokhlov-Zabolotskaya-Kuznetsov equation coupled with a bioheat transfer function. The thermal parameters were set as the functions of temperature using experimental data. The results revealed that, for liver tissue exposed to HIFU with a focal intensity of 3000 W/cm for 10 s, the predicted focal temperature rise was 23% lower and the thermal lesion area 41% smaller than those predicted without considering the temperature dependence. The prediction was validated by experimental observations on thermal lesions visualized in a tissue-mimicking phantom. The present results suggest that temperature-dependent thermal parameters should be considered in the prediction of HIFU-induced temperature rise to avoid lowering ultrasonic output settings for HIFU surgery. The aim of the present study was to investigate how significantly the temperature dependence of the thermal parameters affects the thermal dose imposed on the tissue by a typical clinical HIFU device. A numerical simulation was performed using a thermo-acoustic algorithm coupling the non-linear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation (Meaney et al. 1998; Filonenko and Khokhlova 2001) and a bio-heat transfer (BHT) equation (Pennes 1948). Thermal parameters of liver tissue were modeled in the present study as functions of temperature and were incorporated into the BHT equation to compensate for the variations in thermal parameters with temperature. Experimental validation was achieved by comparing the predictions with the thermal lesions formed in the tissue-mimicking phantoms.
本研究考虑了用于预测高强度聚焦超声(HIFU)暴露组织温升的温度相关热参数(比热容、热扩散率和热导率)。使用 Khokhlov-Zabolotskaya-Kuznetsov 方程结合生物传热函数进行了数值分析。将热参数设置为温度的函数,使用实验数据。结果表明,对于肝脏组织,在焦点强度为 3000 W/cm 下暴露于 HIFU 10 s,预测的焦点温升降低了 23%,热损伤面积减小了 41%,而没有考虑温度依赖性的预测。通过在组织模拟体模中可视化的热损伤的实验观察验证了预测结果。本研究结果表明,在预测 HIFU 诱导的温升时,应考虑温度相关的热参数,以避免降低 HIFU 手术的超声输出设置。本研究的目的是研究热参数的温度依赖性对典型临床 HIFU 设备对组织施加的热剂量的影响程度。使用一种将非线性 Khokhlov-Zabolotskaya-Kuznetsov(KZK)方程(Meaney 等人,1998 年;Filonenko 和 Khokhlova,2001 年)和生物传热(BHT)方程(Pennes,1948 年)耦合的热声算法进行了数值模拟。在本研究中,将肝脏组织的热参数建模为温度的函数,并将其纳入 BHT 方程中,以补偿热参数随温度的变化。通过将预测值与组织模拟体模中形成的热损伤进行比较,实现了实验验证。