He Qun, Tian Dong, Jiang Hongliang, Cao Dengfeng, Wei Shiqiang, Liu Daobin, Song Pin, Lin Yue, Song Li
National Synchrotron Radiation Laboratory, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230029, China.
State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, 650093, China.
Adv Mater. 2020 Mar;32(11):e1906972. doi: 10.1002/adma.201906972. Epub 2020 Jan 27.
Developing efficient electrocatalysts for alkaline water electrolysis is central to substantial progress of alkaline hydrogen production. Herein, a Ni P electrocatalyst incorporating single-atom Ru (Ni P -Ru) is synthesized through the filling of Ru species into the metal vacancies of nickel hydroxides and subsequent phosphorization treatment. Electron paramagnetic resonance spectroscopy, X-ray-based measurements, and electron microscopy observations confirm the strong interaction between the nickel-vacancy defect and Ru cation, resulting in more than 3.83 wt% single-atom Ru incorporation in the obtained Ni P -Ru. The Ni P -Ru as an alkaline hydrogen evolution reaction catalyst achieves low onset potential of 17 mV and an overpotential of 54 mV at a current density of 10 mA cm together with a small Tafel slope of 52.0 mV decade and long-term stability. Further spectroscopy analyses combined with density functional theory calculations reveal that the doped Ru sites can cause localized structure polarization, which brings the low energy barrier for water dissociation on Ru site and the optimized hydrogen adsorption free energy on the interstitial site, well rationalizing the experimental reactivity.
开发用于碱性水电解的高效电催化剂是碱性制氢取得实质性进展的关键。在此,通过将Ru物种填充到氢氧化镍的金属空位中并随后进行磷化处理,合成了一种包含单原子Ru的NiP电催化剂(NiP-Ru)。电子顺磁共振光谱、基于X射线的测量以及电子显微镜观察证实了镍空位缺陷与Ru阳离子之间的强相互作用,使得在所得的NiP-Ru中掺入了超过3.83 wt%的单原子Ru。NiP-Ru作为碱性析氢反应催化剂,在电流密度为10 mA cm时,起始电位低至17 mV,过电位为54 mV,塔菲尔斜率小至52.0 mV dec−1,并且具有长期稳定性。进一步的光谱分析结合密度泛函理论计算表明,掺杂的Ru位点会引起局部结构极化,这使得Ru位点上水分解的能垒较低,间隙位点上的氢吸附自由能得到优化,很好地解释了实验反应活性。