School of Chemistry and Chemical Engineering , Chongqing University , 174 Shazheng Street , Chongqing , P. R. China 400030.
Acc Chem Res. 2020 Feb 18;53(2):508-519. doi: 10.1021/acs.accounts.9b00608. Epub 2020 Jan 27.
Polysubstituted arenes are prevalent in numerous natural products, medicines, agrochemicals, and organic functional materials. Among methods to prepare polysubstituted arenes, pathways involving benzyne intermediates are particularly attractive given they can readily assemble highly diverse vicinal difunctionalized benzenes in a step-economical manner under transition-metal-free conditions. In order to incorporate more than two substituents on a benzene ring via a benzyne intermediate, methodologies involving benzdiyne and benztriyne have been developed, which significantly expand the current difunctionalization strategies in benzyne chemistry. In the past years, our group has been focusing on pushing the frontier of traditional benzyne chemistry and exploring new applications. In an aim to efficiently and conveniently construct polysubstituted arenes, we developed several aryne multifunctionalization strategies. The first strategy is through the 1,2-benzdiyne processes, which can be divided into a domino aryne approach and stepwise 1,2-benzdiyne approach. In our domino aryne study, we developed three domino aryne reagents as "" synthons, which are complementary in terms of reactivity and could adapt different modes of cascade transformations. By employing these domino aryne precursors, we were able to accomplish several cascade transformations, including double nucleophilic reactions, i.e., the reaction with carbonyl protected benzothioamides, 1,2-diamination, and 1,3-diamination. In addition, two cascade processes involving nucleophilic and pericyclic reactions, namely, domino aryne annulation via nucleophilic-ene cascade and domino aryne nucleophilic, Diels-Alder process, were successfully achieved as well. Meanwhile, with our desire to expand the scope of 1,2-benzdiyne transformations, we employed stepwise 1,2-benzdiyne tactics to access polysubstituted arenes. Depending on the property of the substituent on the C3-position of a benzyne intermediate, either an electron-withdrawing or electron-donating group, the incoming groups were chosen accordingly. Consequently, we realized a [2 + 2] cycloaddition-Grob fragmentation process using 3-triflyloxybenzyne and a 1,2-benzdiyne process using 3-(trimethylsilyl)benzyne. Our second research strategy is to use single benzyne to access trisubstituted arenes, which represents a more atom- and step-economical protocol. With our deliberate design, we discovered a tandem benzyne S═O bond insertion/C-H functionalization process using single benzyne and aryl allyl sulfoxides, furnishing three chemical bonds of different types in a single process. This transformation is the first 1,2,3-trisubstitution example using single benzyne intermediate. At last, we developed an oxidative dearomatization strategy on Kobayashi benzyne precursors, which led to the preparation of various cyclohexenynone precursors with diverse substituents in highly efficient manner. In this study, we also demonstrated a new reaction mode of these cyclohexenynones with allyl sulfoxides, which involves a deeper utilization of the cyclohexyne triple bond. This work is the first example of successful connection of precursors of benzyne with cyclohexyne together, revealing a new research direction in the field of cyclohexyne.
多取代芳烃广泛存在于许多天然产物、药物、农用化学品和有机功能材料中。在制备多取代芳烃的方法中,涉及苯炔中间体的途径特别有吸引力,因为它们可以在无过渡金属条件下以经济的方式容易地组装高度多样化的邻位二官能化苯。为了通过苯炔中间体在苯环上引入超过两个取代基,已经开发了涉及苯并二炔和苯并三炔的方法,这显著扩展了苯炔化学中的当前二官能化策略。在过去的几年中,我们小组一直专注于推动传统苯炔化学的前沿,并探索新的应用。为了高效、方便地构建多取代芳烃,我们开发了几种芳基炔烃多功能化策略。第一种策略是通过 1,2-苯二炔过程,可分为多步 1,2-苯二炔途径和多步 1,2-苯二炔途径。在我们的多步苯二炔研究中,我们开发了三种多步苯二炔试剂作为“”合成子,它们在反应性方面互补,并可以适应不同的级联转化模式。通过使用这些多步苯二炔前体,我们能够完成几种级联转化,包括双亲核反应,即与羰基保护的苯并噻唑酰胺、1,2-二氨基化和 1,3-二氨基化的反应。此外,还成功实现了两种涉及亲核和周环反应的级联过程,即通过亲核-烯级联的多步苯二炔环化和多步苯二炔亲核、Diels-Alder 过程。同时,为了扩大 1,2-苯二炔转化的范围,我们采用多步 1,2-苯二炔策略来获得多取代芳烃。根据苯炔中间体 C3 位取代基的性质,即吸电子或供电子基团,选择相应的进入基团。因此,我们使用 3-三氟甲氧基苯炔实现了[2+2]环加成- Grob 碎裂过程,使用 3-(三甲基甲硅烷基)苯炔实现了 1,2-苯二炔过程。我们的第二个研究策略是使用单苯炔来获得三取代芳烃,这代表了一种更原子经济和步骤经济的方案。通过我们的精心设计,我们发现了使用单苯炔和芳基烯丙基砜的串联苯炔 S═O 键插入/C-H 官能化过程,在单个过程中形成三种不同类型的化学键。这种转化是使用单苯炔中间体的首例 1,2,3-三取代实例。最后,我们对 Kobayashi 苯炔前体开发了一种氧化去芳构化策略,以高效的方式制备了具有各种取代基的各种环己烯酮前体。在这项研究中,我们还展示了这些环己烯酮与烯丙基砜的一种新反应模式,涉及环己烯三键的更深层次利用。这项工作是成功连接苯炔前体与环己烯的首例,为环己烯领域的研究开辟了新的方向。