Suppr超能文献

用于共形和表皮储能的水转印喷墨打印超级电容器

Water-Transferred, Inkjet-Printed Supercapacitors toward Conformal and Epidermal Energy Storage.

作者信息

Giannakou Pavlos, Tas Mehmet O, Le Borgne Brice, Shkunov Maxim

机构信息

Advanced Technology Institute, Department of Electrical and Electronic Engineering , University of Surrey , Guildford GU2 7XH , United Kingdom.

GREMAN Institute and CERTEM , University of Tours , Tours 37000 , France.

出版信息

ACS Appl Mater Interfaces. 2020 Feb 19;12(7):8456-8465. doi: 10.1021/acsami.9b21283. Epub 2020 Feb 5.

Abstract

Rapid growth of the internet of things and health monitoring systems have stimulated the development of flexible, wearable, and conformal embedded electronics with the unprecedented need for energy storage systems fully adaptable to diverse form factors. Conventional fabrication methods, such as photolithography for electronics and electrode winding/stacking for energy storage systems, struggle as fabrication strategies to produce devices with three-dimensional, stretchable, and conformal form factors. In this study, we demonstrate the fabrication of supercapacitors on 3D objects through inkjet and water-transfer printing. The devices are initially printed on a water-soluble substrate, which is then placed on the surface of water. Once the substrate is dissolved, the level of water is lowered until the devices are transferred on to the submerged 3D object. As a proof of concept, planar supercapacitors constituted of a silver nanoparticle-based current collector, nickel(II) oxide (NiO) nanoparticle-based active electrodes, and ultraviolet-cured triacrylate polymer-based solid-state electrolyte were used as model materials. The conformal supercapacitors showed a maximum areal capacitance of 87.2 mF·cm at a voltage window of 0-1.5 V. Moreover, the concept of water transfer was further explored with a particular focus on wearable applications by transferring the supercapacitors onto the skin of a human subject to realize epidermal energy storage. This new class of conformal electrochemical energy storage offers a new alternative approach toward monolithically integrated/object-tailored energy storage systems that are essential for complex-shaped devices for internet of things and flexible/on-skin electronic applications.

摘要

物联网和健康监测系统的快速发展刺激了柔性、可穿戴和贴合式嵌入式电子产品的发展,对能量存储系统提出了前所未有的需求,要求其能完全适应各种不同的外形因素。传统的制造方法,如用于电子产品的光刻技术和用于能量存储系统的电极缠绕/堆叠技术,作为制造具有三维、可拉伸和贴合外形因素的器件的制造策略存在困难。在本研究中,我们展示了通过喷墨印刷和水转印在三维物体上制造超级电容器。这些器件最初被印刷在水溶性基板上,然后将其放置在水面上。一旦基板溶解,水面下降,直到器件转移到浸没的三维物体上。作为概念验证,由银纳米颗粒基集流体、氧化镍(NiO)纳米颗粒基活性电极和紫外光固化三丙烯酸酯聚合物基固态电解质构成的平面超级电容器被用作模型材料。这种贴合式超级电容器在0 - 1.5 V的电压窗口下显示出最大面积电容为87.2 mF·cm 。此外,通过将超级电容器转移到人体受试者的皮肤上以实现表皮能量存储,进一步探索了水转印概念,并特别关注可穿戴应用。这种新型的贴合式电化学能量存储为单片集成/根据物体定制的能量存储系统提供了一种新的替代方法,这对于物联网的复杂形状设备以及柔性/皮肤表面电子应用至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验