文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

卵巢癌中枢纽基因和治疗药物的筛选的综合生物信息学分析。

Integrated bioinformatics analysis for the screening of hub genes and therapeutic drugs in ovarian cancer.

机构信息

Department of Environmental Health, School of Public Health, China Medical University, 77th Puhe Road, Shenyang, 110122, Liaoning, China.

Department of Central Laboratory, The First Affiliated Hospital, China Medical University, 155th Nanjing North Street, Shenyang, 110001, Liaoning, China.

出版信息

J Ovarian Res. 2020 Jan 27;13(1):10. doi: 10.1186/s13048-020-0613-2.


DOI:10.1186/s13048-020-0613-2
PMID:31987036
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6986075/
Abstract

BACKGROUND: Ovarian cancer (OC) ranks fifth as a cause of gynecological cancer-associated death globally. Until now, the molecular mechanisms underlying the tumorigenesis and prognosis of OC have not been fully understood. This study aims to identify hub genes and therapeutic drugs involved in OC. METHODS: Four gene expression profiles (GSE54388, GSE69428, GSE36668, and GSE40595) were downloaded from the Gene Expression Omnibus (GEO), and the differentially expressed genes (DEGs) in OC tissues and normal tissues with an adjusted P-value < 0.05 and a |log fold change (FC)| > 1.0 were first identified by GEO2R and FunRich software. Next, Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) analyses were performed for functional enrichment analysis of these DEGs. Then, the hub genes were identified by the cytoHubba plugin and the other bioinformatics approaches including protein-protein interaction (PPI) network analysis, module analysis, survival analysis, and miRNA-hub gene network construction was also performed. Finally, the GEPIA2 and DGIdb databases were utilized to verify the expression levels of hub genes and to select the candidate drugs for OC, respectively. RESULTS: A total of 171 DEGs were identified, including 114 upregulated and 57 downregulated DEGs. The results of the GO analysis indicated that the upregulated DEGs were mainly involved in cell division, nucleus, and protein binding, whereas the biological functions showing enrichment in the downregulated DEGs were mainly negative regulation of transcription from RNA polymerase II promoter, protein complex and apicolateral plasma membrane, and glycosaminoglycan binding. As for the KEGG-pathway, the upregulated DEGs were mainly associated with metabolic pathways, biosynthesis of antibiotics, biosynthesis of amino acids, cell cycle, and HTLV-I infection. Additionally, 10 hub genes (KIF4A, CDC20, CCNB2, TOP2A, RRM2, TYMS, KIF11, BIRC5, BUB1B, and FOXM1) were identified and survival analysis of these hub genes showed that OC patients with the high-expression of CCNB2, TYMS, KIF11, KIF4A, BIRC5, BUB1B, FOXM1, and CDC20 were statistically more likely to have poorer progression free survival. Meanwhile, the expression levels of the hub genes based on GEPIA2 were in accordance with those based on GEO. Finally, DGIdb database was used to identify 62 small molecules as the potentially targeted drugs for OC treatment. CONCLUSIONS: In summary, the data may produce new insights regarding OC pathogenesis and treatment. Hub genes and candidate drugs may improve individualized diagnosis and therapy for OC in future.

摘要

背景:卵巢癌(OC)在全球妇科癌症相关死亡原因中排名第五。迄今为止,OC 的肿瘤发生和预后的分子机制尚未完全阐明。本研究旨在鉴定 OC 中涉及的枢纽基因和治疗药物。

方法:从基因表达综合数据库(GEO)中下载了四个基因表达谱(GSE54388、GSE69428、GSE36668 和 GSE40595),通过 GEO2R 和 FunRich 软件首先鉴定 OC 组织和正常组织中差异表达基因(DEGs),其调整后 P 值 < 0.05,|log 倍变化(FC)| > 1.0。接下来,对这些 DEGs 进行基因本体论(GO)和京都基因与基因组百科全书(KEGG)分析,以进行功能富集分析。然后,通过 cytoHubba 插件和其他生物信息学方法(包括蛋白质-蛋白质相互作用(PPI)网络分析、模块分析、生存分析和 miRNA-枢纽基因网络构建)鉴定枢纽基因。最后,利用 GEPIA2 和 DGIdb 数据库分别验证枢纽基因的表达水平,并选择 OC 的候选药物。

结果:共鉴定出 171 个 DEGs,包括 114 个上调 DEGs 和 57 个下调 DEGs。GO 分析结果表明,上调的 DEGs 主要参与细胞分裂、核和蛋白质结合,而下调的 DEGs 的生物学功能富集主要是 RNA 聚合酶 II 启动子转录的负调控、蛋白质复合物和顶端侧质膜、糖胺聚糖结合。至于 KEGG 途径,上调的 DEGs 主要与代谢途径、抗生素生物合成、氨基酸生物合成、细胞周期和 HTLV-I 感染有关。此外,鉴定出 10 个枢纽基因(KIF4A、CDC20、CCNB2、TOP2A、RRM2、TYMS、KIF11、BIRC5、BUB1B 和 FOXM1),这些枢纽基因的生存分析表明,OC 患者的 CCNB2、TYMS、KIF11、KIF4A、BIRC5、BUB1B、FOXM1 和 CDC20 表达水平较高,其无进展生存期更有可能较差。同时,基于 GEPIA2 的枢纽基因表达水平与基于 GEO 的表达水平一致。最后,DGIdb 数据库用于鉴定 62 种小分子作为 OC 治疗的潜在靶向药物。

结论:综上所述,这些数据可能为 OC 的发病机制和治疗提供新的见解。枢纽基因和候选药物可能会提高未来 OC 的个体化诊断和治疗水平。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1fa/6986075/9388a7836551/13048_2020_613_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1fa/6986075/9712e2c77827/13048_2020_613_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1fa/6986075/ff8dce87c4e3/13048_2020_613_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1fa/6986075/a75b67dbc332/13048_2020_613_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1fa/6986075/291edb479c3f/13048_2020_613_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1fa/6986075/5ce20d916ffc/13048_2020_613_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1fa/6986075/a544a5b1a457/13048_2020_613_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1fa/6986075/f9354a7f1c55/13048_2020_613_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1fa/6986075/9388a7836551/13048_2020_613_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1fa/6986075/9712e2c77827/13048_2020_613_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1fa/6986075/ff8dce87c4e3/13048_2020_613_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1fa/6986075/a75b67dbc332/13048_2020_613_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1fa/6986075/291edb479c3f/13048_2020_613_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1fa/6986075/5ce20d916ffc/13048_2020_613_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1fa/6986075/a544a5b1a457/13048_2020_613_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1fa/6986075/f9354a7f1c55/13048_2020_613_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1fa/6986075/9388a7836551/13048_2020_613_Fig8_HTML.jpg

相似文献

[1]
Integrated bioinformatics analysis for the screening of hub genes and therapeutic drugs in ovarian cancer.

J Ovarian Res. 2020-1-27

[2]
Integrated Bioinformatics Analysis for the Screening of Hub Genes and Therapeutic Drugs in Hepatocellular Carcinoma.

Curr Pharm Biotechnol. 2023

[3]
Prognostic values and prospective pathway signaling of MicroRNA-182 in ovarian cancer: a study based on gene expression omnibus (GEO) and bioinformatics analysis.

J Ovarian Res. 2019-11-8

[4]
Identification of Differentially Expressed Genes (DEGs) Relevant to Prognosis of Ovarian Cancer by Use of Integrated Bioinformatics Analysis and Validation by Immunohistochemistry Assay.

Med Sci Monit. 2019-12-24

[5]
Identification of key biomarkers associated with development and prognosis in patients with ovarian carcinoma: evidence from bioinformatic analysis.

J Ovarian Res. 2019-11-15

[6]
Screening and Identification of Key Biomarkers in Inflammatory Breast Cancer Through Integrated Bioinformatic Analyses.

Genet Test Mol Biomarkers. 2020-8

[7]
Bioinformatics analysis of mRNA and miRNA microarray to identify the key miRNA-mRNA pairs in cisplatin-resistant ovarian cancer.

BMC Cancer. 2021-4-23

[8]
Identification of candidate biomarkers and pathways associated with SCLC by bioinformatics analysis.

Mol Med Rep. 2018-5-29

[9]
Identification of Potential Hub Genes and Therapeutic Drugs in Malignant Pleural Mesothelioma by Integrated Bioinformatics Analysis.

Oncol Res Treat. 2020

[10]
Identification and Integrated Analysis of Key Biomarkers for Diagnosis and Prognosis of Non-Small Cell Lung Cancer.

Med Sci Monit. 2019-12-5

引用本文的文献

[1]
Integrated analysis of microRNA and mRNA interactions regulating fecundity in the ovaries of two distinct sheep breeds.

BMC Genomics. 2025-7-31

[2]
MEOX2 mediates cisplatin resistance in ovarian cancer via E2F target and DNA repair pathways.

J Ovarian Res. 2025-3-21

[3]
CDC20 and CCNB1 Overexpression as Prognostic Markers in Bladder Cancer.

Diagnostics (Basel). 2024-12-29

[4]
Unveiling miRNA-Gene Regulatory Axes as Promising Biomarkers for Liver Cirrhosis and Hepatocellular Carcinoma.

ACS Omega. 2024-10-25

[5]
Molecular Mechanism Analysis of Intensive Light-Induced Retinal Damages.

J Lasers Med Sci. 2024-9-24

[6]
A new method for network bioinformatics identifies novel drug targets for mucinous ovarian carcinoma.

NAR Genom Bioinform. 2024-8-24

[7]
Understanding the Molecular Landscape of Endometriosis: A Bioinformatics Approach to Uncover Signaling Pathways and Hub Genes.

Iran J Pharm Res. 2024-4-6

[8]
Translocase of Outer Mitochondrial Membrane 40, as a Promising Biomarker for the Diagnosis of Polycystic Ovary Syndrome and Pan-Cancer.

Reprod Sci. 2024-11

[9]
Comprehensive analysis of hub genes associated with cisplatin-resistance in ovarian cancer and screening of therapeutic drugs through bioinformatics and experimental validation.

J Ovarian Res. 2024-7-10

[10]
Identification of MAD2L1 and BUB1B as Potential Biomarkers Associated with Progression and Prognosis of Ovarian Cancer.

Biochem Genet. 2024-4-29

本文引用的文献

[1]
Identification of hub genes and therapeutic drugs in esophageal squamous cell carcinoma based on integrated bioinformatics strategy.

Cancer Cell Int. 2019-5-22

[2]
Identification of significant genes with poor prognosis in ovarian cancer via bioinformatical analysis.

J Ovarian Res. 2019-4-22

[3]
Identification of Key Candidate Genes and Pathways for Relationship between Ovarian Cancer and Diabetes Mellitus Using Bioinformatical Analysis.

Asian Pac J Cancer Prev. 2019-1-25

[4]
Identification of molecular marker associated with ovarian cancer prognosis using bioinformatics analysis and experiments.

J Cell Physiol. 2019-1-11

[5]
miR-203 inhibits ovarian tumor metastasis by targeting BIRC5 and attenuating the TGFβ pathway.

J Exp Clin Cancer Res. 2018-9-21

[6]
Death receptor 6 promotes ovarian cancer cell migration through KIF11.

FEBS Open Bio. 2018-8-7

[7]
rs495139 in the TYMS-ENOSF1 Region and Risk of Ovarian Carcinoma of Mucinous Histology.

Int J Mol Sci. 2018-8-21

[8]
Increased KIF4A expression is a potential prognostic factor in prostate cancer.

Oncol Lett. 2018-5

[9]
KIF4A facilitates cell proliferation via induction of p21-mediated cell cycle progression and promotes metastasis in colorectal cancer.

Cell Death Dis. 2018-5-1

[10]
Usefulness of Amino Acid Profiling in Ovarian Cancer Screening with Special Emphasis on Their Role in Cancerogenesis.

Int J Mol Sci. 2017-12-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索