文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过生物信息学分析鉴定卵巢癌中具有不良预后的显著基因。

Identification of significant genes with poor prognosis in ovarian cancer via bioinformatical analysis.

机构信息

Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, #128 Shenyang Road, Shanghai, 200090, China.

Department of Gynaecology and Obstetrics, Changhai Hospital, Navy Medical University, #168 Changhai Road, Shanghai, 200433, China.

出版信息

J Ovarian Res. 2019 Apr 22;12(1):35. doi: 10.1186/s13048-019-0508-2.


DOI:10.1186/s13048-019-0508-2
PMID:31010415
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6477749/
Abstract

Ovarian cancer (OC) is the highest frequent malignant gynecologic tumor with very complicated pathogenesis. The purpose of the present academic work was to identify significant genes with poor outcome and their underlying mechanisms. Gene expression profiles of GSE36668, GSE14407 and GSE18520 were available from GEO database. There are 69 OC tissues and 26 normal tissues in the three profile datasets. Differentially expressed genes (DEGs) between OC tissues and normal ovarian (OV) tissues were picked out by GEO2R tool and Venn diagram software. Next, we made use of the Database for Annotation, Visualization and Integrated Discovery (DAVID) to analyze Kyoto Encyclopedia of Gene and Genome (KEGG) pathway and gene ontology (GO). Then protein-protein interaction (PPI) of these DEGs was visualized by Cytoscape with Search Tool for the Retrieval of Interacting Genes (STRING). There were total of 216 consistently expressed genes in the three datasets, including 110 up-regulated genes enriched in cell division, sister chromatid cohesion, mitotic nuclear division, regulation of cell cycle, protein localization to kinetochore, cell proliferation and Cell cycle, progesterone-mediated oocyte maturation and p53 signaling pathway, while 106 down-regulated genes enriched in palate development, blood coagulation, positive regulation of transcription from RNA polymerase II promoter, axonogenesis, receptor internalization, negative regulation of transcription from RNA polymerase II promoter and no significant signaling pathways. Of PPI network analyzed by Molecular Complex Detection (MCODE) plug-in, all 33 up-regulated genes were selected. Furthermore, for the analysis of overall survival among those genes, Kaplan-Meier analysis was implemented and 20 of 33 genes had a significantly worse prognosis. For validation in Gene Expression Profiling Interactive Analysis (GEPIA), 15 of 20 genes were discovered highly expressed in OC tissues compared to normal OV tissues. Furthermore, four genes (BUB1B, BUB1, TTK and CCNB1) were found to significantly enrich in the cell cycle pathway via re-analysis of DAVID. In conclusion, we have identified four significant up-regulated DEGs with poor prognosis in OC on the basis of integrated bioinformatical methods, which could be potential therapeutic targets for OC patients.

摘要

卵巢癌(OC)是发病率最高的妇科恶性肿瘤,其发病机制非常复杂。本学术研究的目的是鉴定与不良预后相关的重要基因及其潜在机制。从 GEO 数据库中获取了 GSE36668、GSE14407 和 GSE18520 三个数据集的基因表达谱,这三个数据集分别包含 69 例 OC 组织和 26 例正常卵巢(OV)组织。利用 GEO2R 工具和 Venn 图软件,从三个数据集的 OC 组织和正常 OV 组织中筛选出差异表达基因(DEGs)。然后,我们利用数据库 for Annotation, Visualization and Integrated Discovery(DAVID)对京都基因与基因组百科全书(KEGG)通路和基因本体(GO)进行分析。接下来,我们使用 Cytoscape 软件和 Search Tool for the Retrieval of Interacting Genes(STRING)可视化这些 DEGs 的蛋白质-蛋白质相互作用(PPI)。在三个数据集中共筛选出 216 个一致表达的基因,包括 110 个上调基因,这些基因主要富集在细胞分裂、姐妹染色单体黏合、有丝分裂核分裂、细胞周期调控、蛋白向动粒的定位、细胞增殖和细胞周期、孕激素介导的卵母细胞成熟和 p53 信号通路;106 个下调基因主要富集在腭发育、血液凝固、RNA 聚合酶 II 启动子转录的正调控、轴突生成、受体内化、RNA 聚合酶 II 启动子转录的负调控,以及无显著信号通路。通过 Molecular Complex Detection(MCODE)插件分析 PPI 网络,选择了所有 33 个上调基因。此外,通过 Kaplan-Meier 分析对这些基因的总体生存情况进行分析,其中 20 个基因的预后明显较差。在 Gene Expression Profiling Interactive Analysis(GEPIA)中进行验证,发现 20 个基因中有 15 个在 OC 组织中的表达明显高于正常 OV 组织。此外,通过对 DAVID 的重新分析,发现四个基因(BUB1B、BUB1、TTK 和 CCNB1)在细胞周期通路中显著富集。总之,我们基于综合生物信息学方法鉴定了 OC 中四个预后不良的显著上调 DEGs,它们可能成为 OC 患者的潜在治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b145/6477749/946efa87a3cd/13048_2019_508_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b145/6477749/8a5343cff09c/13048_2019_508_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b145/6477749/10770fe32049/13048_2019_508_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b145/6477749/3127f330deb6/13048_2019_508_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b145/6477749/2bf67ad9bfac/13048_2019_508_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b145/6477749/946efa87a3cd/13048_2019_508_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b145/6477749/8a5343cff09c/13048_2019_508_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b145/6477749/10770fe32049/13048_2019_508_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b145/6477749/3127f330deb6/13048_2019_508_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b145/6477749/2bf67ad9bfac/13048_2019_508_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b145/6477749/946efa87a3cd/13048_2019_508_Fig5_HTML.jpg

相似文献

[1]
Identification of significant genes with poor prognosis in ovarian cancer via bioinformatical analysis.

J Ovarian Res. 2019-4-22

[2]
Identification of key biomarkers associated with development and prognosis in patients with ovarian carcinoma: evidence from bioinformatic analysis.

J Ovarian Res. 2019-11-15

[3]
Identification of Core Prognosis-Related Candidate Genes in Cervical Cancer via Integrated Bioinformatical Analysis.

Biomed Res Int. 2020-3-11

[4]
Identification of critical genes in gastric cancer to predict prognosis using bioinformatics analysis methods.

Ann Transl Med. 2020-7

[5]
Prognostic values and prospective pathway signaling of MicroRNA-182 in ovarian cancer: a study based on gene expression omnibus (GEO) and bioinformatics analysis.

J Ovarian Res. 2019-11-8

[6]
Identification of molecular marker associated with ovarian cancer prognosis using bioinformatics analysis and experiments.

J Cell Physiol. 2019-1-11

[7]
Identification of significant genes as prognostic markers and potential tumor suppressors in lung adenocarcinoma via bioinformatical analysis.

BMC Cancer. 2021-5-26

[8]
Genes That Predict Poor Prognosis in Breast Cancer via Bioinformatical Analysis.

Biomed Res Int. 2021

[9]
Integrated bioinformatics analysis for the screening of hub genes and therapeutic drugs in ovarian cancer.

J Ovarian Res. 2020-1-27

[10]
Identification of candidate biomarkers and analysis of prognostic values in ovarian cancer by integrated bioinformatics analysis.

Med Oncol. 2016-11

引用本文的文献

[1]
Multi-Omics analysis and in vitro validation reveal diagnostic and therapeutic roles of novel hub genes in ovarian cancer.

Hereditas. 2025-8-18

[2]
Integrating multi-dimensional data to reveal the mechanisms and molecular targets of baikening granules for treatment of pediatric influenza.

Front Mol Biosci. 2025-7-11

[3]
Multi-omics insights into the roles of CCNB1, PLK1, and HPSE in breast cancer progression: implications for prognosis and immunotherapy.

Discov Oncol. 2025-4-5

[4]
Bioinformatics Based Drug Repurposing Approach for Breast and Gynecological Cancers: Genes Address Common Hub Genes and Drugs.

Eur J Breast Health. 2025-1-1

[5]
BUB1 as a novel marker for predicting the immunotherapy efficacy and prognosis of breast cancer.

Transl Cancer Res. 2024-9-30

[6]
In Silico Exploration of AHR-HIF Pathway Interplay: Implications for Therapeutic Targeting in ccRCC.

Genes (Basel). 2024-9-5

[7]
The Predictive Value of BUB1 in the Prognosis of Oral Squamous Cell Carcinoma.

Int Dent J. 2025-4

[8]
Correlation of BUB1 and BUB1B with the development and prognosis of endometrial cancer.

Sci Rep. 2024-7-24

[9]
Systematic proteomics analysis revealed different expression of laminin interaction proteins in breast cancer: lower in luminal subtype and higher in claudin-low subtype.

Transl Cancer Res. 2024-5-31

[10]
Unravelling driver genes as potential therapeutic targets in ovarian cancer via integrated bioinformatics approach.

J Ovarian Res. 2024-4-23

本文引用的文献

[1]
Upregulation of cyclin B1 plays potential roles in the invasiveness of pituitary adenomas.

J Clin Neurosci. 2017-9

[2]
GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses.

Nucleic Acids Res. 2017-7-3

[3]
Cancer Statistics, 2017.

CA Cancer J Clin. 2017-1-5

[4]
Mechanisms and Targets Involved in Dissemination of Ovarian Cancer.

Cancer Genomics Proteomics. 2016

[5]
Association between polymorphisms in segregation genes BUB1B and TTK and gastric cancer risk.

Radiol Oncol. 2016-7-19

[6]
Cross-validation of survival associated biomarkers in gastric cancer using transcriptomic data of 1,065 patients.

Oncotarget. 2016-8-2

[7]
Prevalence of germline mutations in the spindle assembly checkpoint gene BUB1B in individuals with early-onset colorectal cancer.

Genes Chromosomes Cancer. 2016-11

[8]
Targeting of BUB1b Gene Expression in Sentinel Lymph Node Biopsies of Invasive Breast Cancer in Iranian Female Patients.

Asian Pac J Cancer Prev. 2016

[9]
Overexpression of BUB1B contributes to progression of prostate cancer and predicts poor outcome in patients with prostate cancer.

Onco Targets Ther. 2016-4-15

[10]
Consequences of aneuploidy in sickness and in health.

Curr Opin Cell Biol. 2016-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索