Suppr超能文献

新型微重力膜式光生物反应器中高产密度长时培养小球藻 SAG 211-12 以用于未来的太空生物再生生命保障。

High density long-term cultivation of Chlorella vulgaris SAG 211-12 in a novel microgravity-capable membrane raceway photobioreactor for future bioregenerative life support in SPACE.

机构信息

Institute of Space Systems, University of Stuttgart, Pfaffenwaldring 29, 70569 Stuttgart, Germany.

Institute of Space Systems, University of Stuttgart, Pfaffenwaldring 29, 70569 Stuttgart, Germany.

出版信息

Life Sci Space Res (Amst). 2020 Feb;24:91-107. doi: 10.1016/j.lssr.2019.08.001. Epub 2019 Aug 9.

Abstract

Hybrid life support systems are of great interest for future far-distant space exploration missions to planetary surfaces, e.g. Mars, planned until 2050. By synergistically combining physicochemical and biotechnological algae-based subsystems, an essential step towards the closure of the carbon loop in environmental control and life support systems (ECLSS) shall be accomplished, offering a wide beneficial potential for ECLSS through the utilization of oxygenic photosynthesis: O and potential human food can be formed in-situ from CO and water. The wild type green alga Chlorella vulgaris strain SAG 211-12 was selected as model microorganism due to its photoautotrophic growth, high biomass yield, cultivation flexibility and long-term cultivation robustness. The current study presents for the first time a stable xenic long-term processing of microalgae in a novel microgravity capable membrane raceway photobioreactor for 188 days with the focus on algal growth kinetics and gas evolution. In particular, culture homogeneity and viability were monitored and evaluated during the whole cultivation process due to their putative crucial impact on long-term functionality and efficiency of a closed cultivation system. Based on a specially designed cyclic batch cultivation process for SAG 211-12, a successive biomass growth up to a maximum of 12.2 g l with a max. global volumetric productivity of 1.3 g l d was reached within the closed loop system. The photosynthetic capacity was assessed to a global molar photosynthetic quotient of 0.31. Furthermore, cultivation parameters for a change from batch to continuous processing at high biomass densities and proliferation rates are introduced. The presented µgPBR miniature plant and the developed high throughput cultivation process are planned to be tested under real space conditions within the PBR@LSR project (microgravity and cosmic radiation) aboard the International Space Station with an operation period of up to 180 days to investigate the impact on long-term system stability.

摘要

混合生命支持系统对于未来的深空探测任务到行星表面,例如火星,计划直到 2050 年,具有重要的意义。通过协同结合物理化学和生物技术藻类为基础的子系统,一个重要的步骤对环境控制和生命支持系统(ECLSS)的碳循环关闭,提供了广泛的有益潜力通过利用需氧光合作用:氧气和潜在的人类食物可以从 CO 和水形成原位。野生型绿藻小球藻 SAG 211-12 株被选为模型微生物,因为它的光自养生长,高生物量产量,培养灵活性和长期培养稳健性。目前的研究首次提出了一个稳定的异种长期处理新型微重力膜跑道光生物反应器中的微藻 188 天,重点是藻类生长动力学和气体演化。特别是,由于其对封闭培养系统的长期功能和效率的潜在关键影响,在整个培养过程中监测和评估了培养物的均一性和活力。基于专门设计的 SAG 211-12 循环分批培养过程,在封闭回路系统中达到了最大 12.2g/L 的连续生物量生长,最大全球体积生产率为 1.3g/L/d。光合作用能力被评估为全球摩尔光合商 0.31。此外,还介绍了在高生物量密度和增殖率下从分批到连续处理的培养参数。所提出的µgPBR 微型工厂和开发的高通量培养过程计划在 PBR@LSR 项目(微重力和宇宙辐射)中在国际空间站上进行真实空间条件下的测试,运行时间长达 180 天,以研究对长期系统稳定性的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验