Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
The Chemical Proteomics Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
J Proteomics. 2020 Mar 20;215:103669. doi: 10.1016/j.jprot.2020.103669. Epub 2020 Jan 24.
The selection of a data processing method for use in mass spectrometry-based label-free proteome quantification contributes significantly to its accuracy and precision. In this study, we comprehensively evaluated 7 commonly-used label-free quantification methods (MaxQuant-Spectrum count, MaxQuant-iBAQ, MaxQuant-LFQ, MaxQuant-LFAQ, Proteome Discoverer, MetaMorpheus, TPP-StPeter) with a focus on missing values, precision, accuracy, selectivity, and reproducibility of low abundance protein quantification in both single shot and fractionation. Our results showed that among the tested strategies, MaxQuant in MaxLFQ mode outperformed other strategies in terms of accuracy and precision in both whole proteome and low abundance proteome quantification, whereas the Proteome Discoverer (PD) strategy using SEQUEST as a search engine performed better in terms of quantifiable low abundance proteome coverage. We subsequently applied the PD and MaxLFQ strategies in a blood proteomic dataset and found that many FDA-approved tumor prognostic biomarkers could be identified as well as quantified using the PD strategy, indicating the potential advantage of PD in label-free quantification studies. These results provide a reference for method choice in label-free quantification data analysis. SIGNIFICANCE: Mass spectrometry-based label-free quantification methods play an important role in label-free proteome data analysis. In this study, we evaluated 7 commonly-used label-free quantification methods with respect to the following aspects: missing values, precision, accuracy, selectivity, and reproducibility for low abundance protein quantification. The results showed that, among the strategies evaluated, the PD strategy with SEQUEST as a search engine performed better in terms of low abundance protein coverage. This study provides a reference for method choice in label-free quantification data analysis.
用于基于质谱的无标记蛋白质组定量的数据分析方法的选择对其准确性和精密度有重要影响。在这项研究中,我们全面评估了 7 种常用的无标记定量方法(MaxQuant-Spectrum count、MaxQuant-iBAQ、MaxQuant-LFQ、MaxQuant-LFAQ、Proteome Discoverer、MetaMorpheus、TPP-StPeter),重点关注缺失值、精密度、准确度、选择性和低丰度蛋白质定量的重现性,无论是在单次进样还是分级实验中。我们的结果表明,在所测试的策略中,MaxQuant 在 MaxLFQ 模式下在整个蛋白质组和低丰度蛋白质组定量方面的准确性和精密度均优于其他策略,而使用 SEQUEST 作为搜索引擎的 Proteome Discoverer(PD)策略在可定量的低丰度蛋白质组覆盖率方面表现更好。随后,我们将 PD 和 MaxLFQ 策略应用于血液蛋白质组数据集,发现许多 FDA 批准的肿瘤预后生物标志物可以被识别和定量,这表明 PD 在无标记定量研究中具有潜在优势。这些结果为无标记定量数据分析中的方法选择提供了参考。意义:基于质谱的无标记定量方法在无标记蛋白质组数据分析中起着重要作用。在这项研究中,我们评估了 7 种常用的无标记定量方法,从以下几个方面进行了评估:低丰度蛋白质定量的缺失值、精密度、准确度、选择性和重现性。结果表明,在所评估的策略中,以 SEQUEST 作为搜索引擎的 PD 策略在低丰度蛋白质覆盖率方面表现更好。本研究为无标记定量数据分析中的方法选择提供了参考。