Suppr超能文献

创建一个包含多种造粒方法的新型大数据集,并使用包括交互项的正则化线性回归模型从关键材料属性和关键工艺参数预测片剂性质。

Creation of novel large dataset comprising several granulation methods and the prediction of tablet properties from critical material attributes and critical process parameters using regularized linear regression models including interaction terms.

机构信息

Department of Pharmaceutical Technology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama 930-0194, Japan.

Department of Pharmaceutical Technology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama 930-0194, Japan; Formulation Development Department, Development & Planning Division, Nichi-Iko Pharmaceutical Co., Ltd., 205-1, Shimoumezawa, Namerikawa-shi, Toyama 936-0857, Japan.

出版信息

Int J Pharm. 2020 Mar 15;577:119083. doi: 10.1016/j.ijpharm.2020.119083. Epub 2020 Jan 24.

Abstract

Our aim was to understand better the causal relationships between material attributes (MAs), process parameters (PPs), and critical quality attributes (CQAs) using an originally created large dataset and regularized linear regression models. In this study, we focused on the following three points: (1) creation of a dataset comprising several tablet production methods, (2) the influence of interaction terms of MAs and/or PPs, and (3) comparison of regularized linear regression models with partial least squares (PLS) regression. First, we prepared 44 kinds of tablets using direct compression and five kinds of granulation methods. We then measured 12 MAs and two model CQAs (tensile strength and disintegration time of tablet). Principal component analysis showed that the constructed dataset comprised a wide variety of particles. We applied regularized linear regression models, such as ridge regression, LASSO and Elastic Net (ENET), and PLS to our dataset to predict CQAs from the MAs and PPs. As a result of external validation, the prediction performance of the models was sufficiently high, although ENET was slightly better than the other methods. Moreover, in almost all cases, the models with interaction terms showed higher predictive ability than those without interaction terms, indicating that the interaction terms of MAs and/or PPs have a strong influence on CQAs. ENET also allowed the selection of critical factors that strongly affect CQAs. The results of this study will help to understand systematically knowledge obtained in pharmaceutical development.

摘要

我们的目的是使用原始创建的大型数据集和正则化线性回归模型更好地理解物质属性(MAs)、工艺参数(PPs)和关键质量属性(CQAs)之间的因果关系。在这项研究中,我们主要关注以下三个方面:(1)创建一个包含多种片剂生产方法的数据集,(2)MA 和/或 PP 的交互项的影响,(3)正则化线性回归模型与偏最小二乘(PLS)回归的比较。首先,我们使用直接压缩法和五种制粒方法制备了 44 种片剂。然后,我们测量了 12 个 MA 和两个模型 CQA(片剂的拉伸强度和崩解时间)。主成分分析表明,构建的数据集包含了各种各样的颗粒。我们将正则化线性回归模型(如岭回归、LASSO 和弹性网(ENET)以及 PLS)应用于我们的数据集,以从 MA 和 PP 预测 CQA。经过外部验证,模型的预测性能足够高,尽管 ENET 略优于其他方法。此外,在几乎所有情况下,具有交互项的模型都比没有交互项的模型具有更高的预测能力,这表明 MA 和/或 PP 的交互项对 CQA 有很强的影响。ENET 还允许选择对 CQA 有强烈影响的关键因素。本研究的结果将有助于系统地了解药物开发中获得的知识。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验