Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
Copenhagen Centre for Regulatory Science, University of Copenhagen, Copenhagen, Denmark.
AAPS J. 2020 Jan 27;22(2):32. doi: 10.1208/s12248-020-0414-y.
Exposure-response (ER) modeling for fixed-dose combinations (FDC) has previously been found to have an inflated false positive rate (FP), i.e., observing a significant effect of FDC components when no true effect exists. Longitudinal exposure-response (LER) analysis utilizes the time course of the data and is valid for several clinical endpoints for FDCs. The aim of the study was to investigate if LER is applicable for the validation of FDCs by demonstrating the contribution of each component to the overall effect without inflation of FP rates. FP and FN rates associated with ER and LER analysis were investigated using stochastic simulation and estimation. Four hundred thirty-two scenarios with varying numbers of patients, duration, sampling frequency, dose distribution, design, and drug activity were analyzed using a range of linear, log-linear, and non-linear models to asses FP and FN rates. Lastly, the impact of the clinical trial parameters was investigated. LER analyses provided well-controlled FP rates of the expected 5% or less; however, in low information clinical trials consisting of 30 patients, 4 samples, and 20 days, LER analyses lead to inflated FN rates. Parameter investigation showed that when the clinical trial includes sufficient patients, duration, samples, and an appropriate trial design, the FN rates are in general below the expected 5% for LER analysis. Based on the results, LER analysis can be used for the validation of FDCs and fixed ratio drug combinations. The method constitutes a new avenue for providing evidence that demonstrates the contribution of each component to the overall clinical effect.
固定剂量复方(FDC)的暴露-反应(ER)建模先前已被发现存在虚假阳性率(FP)过高的问题,即观察到 FDC 成分存在显著影响,而实际上不存在真正的影响。纵向暴露-反应(LER)分析利用了数据的时间进程,适用于 FDC 的多个临床终点。本研究的目的是通过证明每个成分对总体效果的贡献,而不会增加 FP 率,来探讨 LER 是否适用于 FDC 的验证。使用随机模拟和估计研究了 ER 和 LER 分析的 FP 和 FN 率。通过一系列线性、对数线性和非线性模型,分析了 432 种具有不同患者数量、持续时间、采样频率、剂量分布、设计和药物活性的场景,以评估 FP 和 FN 率。最后,研究了临床试验参数的影响。LER 分析提供了控制良好的 FP 率,预期在 5%或以下;然而,在包含 30 名患者、4 个样本和 20 天的低信息量临床试验中,LER 分析导致 FN 率过高。参数研究表明,当临床试验包含足够的患者、持续时间、样本和适当的试验设计时,一般来说,LER 分析的 FN 率低于预期的 5%。基于这些结果,LER 分析可用于 FDC 和固定比例药物组合的验证。该方法为提供证据提供了新途径,证明了每个成分对总体临床效果的贡献。